SOCAR Proceedings

SOCAR Proceedings

Published by "OilGasScientificResearchProject" Institute of State Oil Company of Azerbaijan Republic (SOCAR).

SOCAR Proceedings is published from 1930 and is intended for oil and gas industry specialists, post-graduate (students) and scientific workers.

Journal is indexed in Web of Science (Emerging Sources Citation Index), SCOPUS and Russian Scientific Citation Index, and abstracted in EI’s Compendex, Petroleum Abstracts (Tulsa), Inspec, Chemical Abstracts database.

M.M.Isgandarov

«OilGasScientificResearchProject» Institute, SOCAR, Baku, Azerbaijan

Some results of modeling electrical resistivity (оn the example of deposits of the South-Absheron Aquatorium Zone and the northern part of the Baku Archipelago)


The paper analyzes the influence of parameters of the sand and the anisotropic reservoir petrophysical models on the estimated critical value of electrical resistivity. The parameters are revealed, which have the greatest impact on the results of the calculated data and require a more accurate assessment. Simulation results using the Monte Carlo method of electrical resistivity reservoir rocks on the petrophysical models under consideration are presented. The possible range of variation of waterand oil-saturated reservoir resistivity and cut-off values for assessing the saturation type are determined.

Keywords: petrophysical rock model; sensitivity analysis; modeling; electrical resistivity; reservoir; oil saturated; water saturated.

The paper analyzes the influence of parameters of the sand and the anisotropic reservoir petrophysical models on the estimated critical value of electrical resistivity. The parameters are revealed, which have the greatest impact on the results of the calculated data and require a more accurate assessment. Simulation results using the Monte Carlo method of electrical resistivity reservoir rocks on the petrophysical models under consideration are presented. The possible range of variation of waterand oil-saturated reservoir resistivity and cut-off values for assessing the saturation type are determined.

Keywords: petrophysical rock model; sensitivity analysis; modeling; electrical resistivity; reservoir; oil saturated; water saturated.

References

  1. B.Yu.Vendelshteyn. Geophysical methods of studying calculation parameters in the determination of oil and gas reserves. M.: Nedra, 1985.
  2. Vremennoe metodicheskoe rukovodstvo k izucheniyu parametrov zalezhej morskih neftyanyh i gazovyh mestorozhdenij Azerbajdzhana po materialam promyslovoj geofiziki. B.: Elm, 1978.
  3. R.R.Rahmanov. Uglevodorodnyj potencial shelfa Kaspijskogo morya i sopredelnyh territorij sushi Azerbajdzhana. B.: Teknur, 2009.
  4. Teoriya i praktika geologo-geofizicheskih issledovanij i razrabotki morskih mestorojdenij nefti i gaza (na primere Yuzhno-Kaspijskoj vpadiny). T. I. B.: Elm, 1992.
  5. L.A.Buryakovskij, I.S.Dzhafarov, R.D.Dzhevanshir. Prognozirovanie fizicheskih svojstv kollektorov i pokryshek nefti i gaza. М.: Nedra 1982.
  6. M.M.Isgandarov. Estimation of reservoir properties of productive series deposits on Umid field //Proceedings of International Conference «Integrated approach for unlocking hydrocarbon resources». Baku, Azerbaijan, 3-5 October, 2012.
  7. L.A.Buryakovskij, I.S.Dzhafarov, R.D.Dzhevanshir. Modelirovanie sistem neftegazovoj geologii. M.: Nedra, 1990.
  8. V.N.Dakhnov. Geophysical methods of determination of reservoir properties and oil and gas content of rocks. M.: Nedra, 1985.
  9. T.Hill, P.Lewicki. Statistics: methods and applications: a comprehensive reference for science, industry and data mining. Tulsa, OK: StatSoft, 2006.
  10. Log interpretation. Principles/Applications. Schlumberger, 1989.
  11. M.M.Isgandarov, A.H.Abuzarova. Substantiation of criteria for oil & gas content in heterogeneous sandysiltstone reservoirs (On an example of deposits of the Baku archipelago) //SOCAR Proceedings. -2013. -№ 4. -С.6-10.
  12. А.А.Efimov, Ya.V.Savitskiy, S.V.Galkin, et al. Study of wettability of reservoirs of oil fields by the method of X-ray tomography core //SOCAR Proceedings. -2016. -No.4. -P.55-63. 
  13. I.M.Sobol. Numerical Monte Carlo methods. M.: Nauka, 1973.
  14. Y.Dodge. The concise encyclopedia of statistics. New York: Springer-Verlag, 2008.
  15. M.M.Isgandarov. Ocenka plastovyh parametrov kollektorov otlozhenij Produktivnoj tolshchi mestorozhdeniya «Umid» po dannym GIS //Azerbaycanda Geofizika Yenilikleri (Geophysics News in Azerbaijan).
    -2015. –No. 1-2. -P.38-42.
  16. M.M.Isgandarov. Integrated interpretation of well logging results in the study of terrigeneous sections // SOCAR Proceedings. -2014. –No. 3. -P.4-10.
Read more Read less

DOI: 10.5510/OGP20170200310

E-mail: mahal.isgenderov@socar.az


O.E.Baghirov

SOCAR-AQS LLC, Baku, Azerbaijan

Composite materials diamond-(WC-Co-NbN) for drill bits


The influence of the niobium nitride additives on the structure, phase composition and performance characteristics of diamond composite material based on tungsten carbide matrix, obtained by hot pressing was studied. The insertion of the niobium nitride into initial materials enhances the hardness of the transition zone of the diamond - matrix from 14.4 to 28.2 GPa, ultimate stress limit from 4640 to 5260 MP at bending, and reduces composite wear rate from 1790 ×10-6 to 630×10-6 g/m. The mechanism, which contributes to the improvement of mechanical and tribological properties of such composites, was ascertained.

Keywords: diamond; tungsten carbide; cobalt; niobium nitride; transition zone; phase; composite; pressure; temperature; structure; mechanical properties; wear.

The influence of the niobium nitride additives on the structure, phase composition and performance characteristics of diamond composite material based on tungsten carbide matrix, obtained by hot pressing was studied. The insertion of the niobium nitride into initial materials enhances the hardness of the transition zone of the diamond - matrix from 14.4 to 28.2 GPa, ultimate stress limit from 4640 to 5260 MP at bending, and reduces composite wear rate from 1790 ×10-6 to 630×10-6 g/m. The mechanism, which contributes to the improvement of mechanical and tribological properties of such composites, was ascertained.

Keywords: diamond; tungsten carbide; cobalt; niobium nitride; transition zone; phase; composite; pressure; temperature; structure; mechanical properties; wear.

References

  1. N.A.Bondarenko, N.V.Novikov, V.A.Mechnik et al. Structural peculiarities of highly wear-resistant superhard composites of the diamond–WC-6Co carbide system //Journal of Superhard Materials. -2004. –No.6. -P.3-15.
  2. N.V.Novikov, N.A.Bondarenko, A.N.Zhukovsky, V.A.Mechnik. The effect of diffusion and chemical reactions on the structure and properties of drill bit inserts. 1. Kinetic description of systems Cdiamond - VK6 and Cdiamond(VK6-CrB2-W2B5) //Physical
    Mesomechanics. -2005. -Vol.8. –No.2. -P.99-106.
  3. N.A.Bondarenko, A.N.Zhukovsky, V.A.Mechnik. Analysis of the basic theories of sintering of materials. 1. Sintering under isothermal and nonisothermal conditions (a review) // Journal of Superhard Materials. -2005. –No.6. -P.3–17.
  4. N.A.Bondarenko, A.N.Zhukovsky, V.A.Mechnik. Analysis of the basic theories of sintering of materials. 2. Chemical reactions and nucleation processes. Basic principles of the simulation of sintering of superhard composite diamondcontaining materials (a review) //Journal of Superhard Materials. -2006. –No. 1. -P.3–15.
  5. O.E.Baghirov. Composite diamond-bearing materials in rock crushing tools (review) //SOCAR Proceedings. -2016. -No. 2. -P.16-28.
  6. O.E.Baghirov. Regarding application of composite materials of diamond-(WC-Co), alloy CrSi2 in drill bits // SOCAR Proceedings. -2016. -No. 1. - P.15-22.
  7. K.Mizuuchi, K.Inoue, Y.Agari, et al. Consolidation and thermal conductivity of diamond particle dispersed copper matrix composites pro-duced by spark plasma sintering (SPS) //Journal of the Japan Institute of Metals. -2007. –Vol.71. –No. 11. -P.1066–1069.
  8. H.C.Kim, I.J.Shon, I.K.Jeong et al. Rapid sintering of ultrafine WC and WC–Co hard materials by high-frequency induction heated sintering and their mechanical properties // Metals and Materials International. –2007. –13, -N.1. –P. 39–45.
  9. A.Michalski, and D.Siemiaszko. Nanocrystalline cemented carbides sintered by the pulse plasma method //International Journal of Refractory Metals and Hard Materials. –2007. – Vol.25. –No. 2. –P. 153–158.
  10. A.L.Majstrenko. Formirovanie struktury kompozicionnyh almazosoderzhashhih materialov v tehnologicheskih procesah. K.: Naukova dumka, 2014.
  11. A.F.Lisovskii and N.A.Bondarenko. Thermodynamic study of the doping of the diamond–WC–Co composition with silicides of transition metals //Journal of Superhard Materials. - 2012. –No. 4. -P. 33-37.
  12. A.F.Lisovsky, N.A.Bondarenko. The role of interphase and contact surfaces in the formations of structures and properties of diamond–(WC–Co) composites. A review // Journal of Superhard Materials. –2014. –No. 3. -P. 3–17.
  13. M.O.Bondarenko, V.A.Mechnik, and M.V.Suprun. Special features of the shrinkage and its rate in the Cd–Fe–Cu–Ni–Sn–CrB2 system in hot pressing of samples produced by pressureless sintering //Journal of Superhard Materials. -2009. –No. 4. -P. 29-39.
  14. V.A.Aleksandrov, N.A.Alekseenko, V.A.Mechnik. Issledovanie silovyh I energeticheskih parametrov rezki granite almaznymi diskovymi pilami //Sverhtverdye materialy. -1984. -№ 6. –S.35-39.
  15. V.A.Aleksandrov, V.A.Mechnik. Vliyanie teploprovodnosti almazov I koefficienta teploobmena na kontaktnuyu temperature i iznos otreznogo kruga //Treniye i iznos. -1993. –T.14. No. 6. –S.1115-1117.
  16. V.A.Aleksandrov, A.N.Zhukovskii, V.A.Mechnik. Temperaturnoe pole i iznos neodnorodnogo almaznogo kruga pri konvektivnom teploobmene. Ch.1. //Treniye i iznos. –1994. –Т.15. –No.1. –S.27–35.
  17. V.A.Aleksandrov, A.N.Zhukovskii, V.A.Mechnik. Temperaturnoe pole i iznos neodnorodnogo almaznogo kruga pri konvektivnom teploobmene. Ch.2. //Treniye i iznos. –1994. –Т.15. –No.2. –S.196–201.
  18. V.A.Alexandrov, V.A.Mechnik. Determination of the coefficient of diamond cutoff wheel wear in operation // Journal Of Superhard Materials. –1997. –No. 6. –P.57–62.
  19. A.N.Zhukovskii, A.L.Maistrenko, V.A.Mechnik, N.A.Bondarenko. The stress-strain state of the bonding around the diamond grain exposed to normal and tangent loading components. Part 1. Model //Journal of Friction and Wear. -2002. –Vol.23. –No.3. –P.146–153.
  20. A.N.Zhukovskii, A.L.Maistrenko, V.A.Mechnik, N.A.Bondarenko. Stress-strain state of the matrix around the diamond grain exposed to the normal and tangent loading components. Part 2. Analysis //Journal of Friction and Wear. -2002. –Vol.23. –No.4. –P.393–396.
  21. V.А.Mechnyk. Diamond−Fe–Cu–Ni–Sn composite materials with predictable stable characteristics //Materials Science. -2013. –Vol.48. -Issue 5. –P. 591–600.
  22. V.А.Mechnyk. Regularities of structure formation in diamond−Fe–Cu–Ni–Sn–CrB2 systems //Materials Science. -2013. –Vol.49. -Issue 1. –P. 93–101. 
  23. O.E.Baghirov. Regarding application of composite materials of diamond -(WC-Co), alloy CrSi2 in drill bits // SOCAR Proceedings. -2016. –No. 1. -P. 15-22.
  24. D.A.Sidorenko, A.A.Zaitsev, A.N.Kirichenko, E.A.Levashov, et al. Interaction of diamond grains with nanosized alloying agents in metal–matrix composites as studied by Raman spectroscopy //Diamond and Related Materials. –2013. – Vol.38. –P. 59-62.
  25. V.A.Mechnik. Production of diamond-(Fe-Cu-Ni-Sn) composites with high wear resistance //Powder Metallurgy. -2013. –No. 9/10. -P. 115-127.
  26. V.A.Mechnik. Effect of hot post-pressing parameters on the structure and properties of diamond-(Fe-Cu-Ni-Sn-CrB2) composites //Powder Metallurgy. - 2013. –No. 11/12. -P. 123-137.
  27. M.V.Novikov, V.A.Mechnyk, M.O.Bondarenko, et al. Composite materials of diamond (Co–Cu–Sn) system with improved mechanical characteristics. Part 1. The influence of hot re-pressing on the structure and properties of diamond-(Co–Cu–Sn) composite //Journal Of Superhard Materials. -2015. –No. 6. -P. 53-69.
  28. M.V.Novikov, V.A.Mechnyk, M.O.Bondarenko, et al. The influence of CrB2 additive on the structure and properties of diamond-(Co–Cu–Sn) composite //Journal Of Superhard Materials. -2016. –No. 3. -P. 11-27.
  29. V.A.Mechnik, N.A.Bondarenko, N.O.Kuzin, B.A.Lyashenko. Role of structuring in formation of physical-mechanical properties of composites ofdiamond-(Fe-Cu-Ni-Sn) system // Friction and Wear. –2016. –Vol.37. –No. 4. –P. 482–490.
  30. A.V.Beliy, G.D.Karpenko, N.K.Myshkin. Structure and methods of formation of wear-resistant surface layers. M.: Mashinostroenie, 1991.
  31. W.Kraus and G.Nolze. Powder Cell-A program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns //Journal of Applied Crystallography. -1996. -No. 29. -P. 301-303.
  32. Selected powder diffraction data for education straining (Search manual and data cards). USA: Published by the International Centre for diffraction data, 1988.
  33. G.V.Samsonov, I.M.Vinitskii. Handbook of refractory compounds. New York: IFI. Plenum, 1980.
  34. E.A.Almond, B.Roebuck. Some characrerics of veryfinegrained hard-metals //Metal Powder Report. -1987. -Vol.42. –No. 7/8. -P. 512-515.
  35. V.I.Tretyakov. The fundamentals of metals and the manufacturing technology of sintered hard alloys. М.: Metallurgy, 1976
  36. V.A.Borisenko, V.A.Podoroga, V.P.Kebko. High-strength state of two-phase composite materials. Report 1. The simplest models of ordered structures of materials // Strength of Materials. -1991. –Vol. 23. - Issue 3. –P. 240–252.
  37. V.I.Kudryavcev, A.V.Varaksina. Struktura i svojstva splavov Co(W, C) /kn.: Sovremennye instrumental'nye materialy na osnove tugoplavkih soedinenij. M.: Metallurgiya, 1985. -S. 25-28.

 

Read more Read less

DOI: 10.5510/OGP20170200311

E-mail: OBagirov@socar-aqs.com


K.G.Levchuk

Ivano-Frankivsk National Technical University of Oil and Gas, Ivano-Frankivsk, Ukraine

Investigation of the vibration transfer process to a stuck drill string


A mathematical operation model of a drill string with a vibrating mechanism at the top, which is used to eliminate sticking of the drilling tool, has been presented in this article. The resulting discrete-continual model, considering the wave processes, consists of separate sections of drill pipes with different parameters (material, cross-sectional area, external loads). This model is basis for a computer program to visualize oscillatory processes occurring in the pipe string and numeric calculation of the basic kinematic and dynamic characteristics of the studied system. The method of vibrator parameters matching provides a significant increase in the accuracy when determining forces, stresses and safety reserves in an arbitrary pipe string section and predicting sidewall sticking during oil and gas wells drilling. Recommendations are given on the selection the amplitude of disturbance and resonance frequencies for releasing of stuck pipe and prevention drill-string failure.

Keywords: drilling; drill pipe; elastic waves; mathematical model; vibrator; transfer function; amplitude-phase characteristic.

A mathematical operation model of a drill string with a vibrating mechanism at the top, which is used to eliminate sticking of the drilling tool, has been presented in this article. The resulting discrete-continual model, considering the wave processes, consists of separate sections of drill pipes with different parameters (material, cross-sectional area, external loads). This model is basis for a computer program to visualize oscillatory processes occurring in the pipe string and numeric calculation of the basic kinematic and dynamic characteristics of the studied system. The method of vibrator parameters matching provides a significant increase in the accuracy when determining forces, stresses and safety reserves in an arbitrary pipe string section and predicting sidewall sticking during oil and gas wells drilling. Recommendations are given on the selection the amplitude of disturbance and resonance frequencies for releasing of stuck pipe and prevention drill-string failure.

Keywords: drilling; drill pipe; elastic waves; mathematical model; vibrator; transfer function; amplitude-phase characteristic.

References

  1. Yu.A.Nifontov, I.I.Kleshchenko, A.P.Telkov et al. Oil and gas wells repair. S.-Pb.: Professional, 2005, Ch.1; 2009, Ch.2.
  2. O. E. Baghirov. Composite Diamond-Bearing Materials in Rock Crushing Tools (Review) // SOCAR Proceedings. – 2016 – No. 2. – P. 16-28.
  3. A.N.Popov, A.I.Spivak, T.O.Akbulatov et al. The technology of drilling oil and gas drilling. M.: Nedra-Business center, 2003.
  4. A . A . H a j i y e v , E . K . T o l e p b e r g e n o v . F i e l d T e s t s o f N e w C o m p o s i t i o n f o r S t a b i l i z i n g W e a k P r o d u c i n g F o r m a t i o n / / S O C A R P r o c e e d i n g s . – 2 0 1 5 – N o . 4 . – P . 3 1 - 3 5 .
  5. V.V.Rys. Vplyv vіbratsіy na syly prykhoplennya burylnykh trub pry lіkvіdatsіyi uskladnen //Prykarpat. vіsn. NTSh. Ser. Chyslo. –2015. –No. 1. –P. 263-274.
  6. Z.G.Kerimov. Dynamic calculations of the drill string. M.: Nedra, 1970.
  7. K.K.Botros, J.O’Blenes, E.Yajure. Transfer matrix technique for determining the resonance conditions in retrieving stuck drill pipes with a top vibratory suspended drive //Journal of Petroleum and Gas Engineering. –2014. –Vol.5(5) –P.70-82.
  8. P.Fox.William. Mathematical modeling with maple. Belmont, CA: Brooks/Cole Cengage Learning, 2012.
  9. A.Kh.Mirzadjanzade, M.M.Khasanov, R.N.Bahtizin, Modelling of processes oil production. Nonlinearity, nonequilibrium, uncertainty. Moskva-Izhevsk: ICR, 2004.
  10. H. Hahn, Theory of elasticity: foundations of linear theory and its applications. M.: Mir, 1988.
  11. A.A.Samarskii, P.N.Vabishchevich. Numerical methods for solving inverse problems of mathematical physics. М.: LKI, 2009. 
  12. O.A.Abdukamalov, L.N.Serebryakova, A.R.Tastemirov. Experience of Shock Action for Bottomhole Zone Treatment of Injection Wells in the Fields of Western Kazakhstan // SOCAR Proceedings. –2017 –No. 1. –P. 62-65.
  13. Zh.B.Toshov. Analiz sovremennogo sostoyaniya voprosa dinamiki promyvochnoj zhidkosti v processe bureniya skvazhin //Izvestiya KGTU im. I.Razzakova. –2014. –Vyp.33. –S.250-252.
  14. E.M.Abbasov, N.A.Agaeva. Propagation of the constructed of pressure waves in fluid with the account dynamic connection of system the well-formation //SOCAR Proceedings. –2014. –No. 1. –P.77-84.
  15. J.Pei. Numerical study of solid expandable tubular technology //SOCAR Proceedings. –2016. –No. 1. –P.25-33. 
  16. Z.G.Kerimov, N.A.Radzhabov, H.D.Omarov. Eksperimentalnoe issledovanie prodolnyh kolebanij vertlyuga v processe bureniya skvazhin //Neft i gaz. –1972. –№3. –S. 21-24.
Read more Read less

DOI: 10.5510/OGP20170200312

E-mail: kgl.imp.nan@gmail.com


B.А.Suleimanov1, А.А.Suleymanov2, E.М.Аbbasov1, E.T.Baspayev1

1«OilGasScientificResearchProject» Institute, SOCAR, Baku, Azerbaijan; 2Azerbaijan State Oil and Industrial University, Baku, Azerbaijan

Gas condensate system filtration in subcritical region


The paper presents the experimental studies of the gas condensate system flow in the porous medium at the pressure, which is higher than the dewpoint pressure. The experimental studies of the stationary filtration showed that the gas flow rate starts increasing at the pressure, which significantly exceeds the phase transition P = 1.74 Pс (Pс – dewpoint pressure), and, at the pressure P = 1.5 Pс, the gas flow rate reaches its peak and is almost 30% higher than the flow rate near the phase-transition point. Furthermore, the dependence of the gas flow rate on the pressure level has nonmonotonic nature and the increased values of the flow rate are reached within the range of the pressure level P = 1.4-1.74Pс. The influence of the wettability on the process of the stationary filtration was considered. It was shown that there isn’t any increase of the gas flow rate in the oleophobic porous medium. The non-stationary filtration of the gas condensate system was eperimentally studied. It was shown that a significant reduction of the system piezo-conductivity occurs during the process of the non-stationary filtration when the pressure decreases. It is related with the increase in the compressibility due to the subcritical condensate formation in the porous medium. The mechanism of observed effects was suggested based on formation of the stable subcritical condensate nuclei, associated slippage effect, and change of the system compressibility. The mechanism for stabilization of the subcritical nuclei by the combined action of the surface and electrical forces was considered. The mathematical models to describe the obtained experimental results were proposed.

Keywords: gas condensate system; dewpoint pressure; filtration; porous medium; slippage effect; gas flow rate; concentration.

The paper presents the experimental studies of the gas condensate system flow in the porous medium at the pressure, which is higher than the dewpoint pressure. The experimental studies of the stationary filtration showed that the gas flow rate starts increasing at the pressure, which significantly exceeds the phase transition P = 1.74 Pс (Pс – dewpoint pressure), and, at the pressure P = 1.5 Pс, the gas flow rate reaches its peak and is almost 30% higher than the flow rate near the phase-transition point. Furthermore, the dependence of the gas flow rate on the pressure level has nonmonotonic nature and the increased values of the flow rate are reached within the range of the pressure level P = 1.4-1.74Pс. The influence of the wettability on the process of the stationary filtration was considered. It was shown that there isn’t any increase of the gas flow rate in the oleophobic porous medium. The non-stationary filtration of the gas condensate system was eperimentally studied. It was shown that a significant reduction of the system piezo-conductivity occurs during the process of the non-stationary filtration when the pressure decreases. It is related with the increase in the compressibility due to the subcritical condensate formation in the porous medium. The mechanism of observed effects was suggested based on formation of the stable subcritical condensate nuclei, associated slippage effect, and change of the system compressibility. The mechanism for stabilization of the subcritical nuclei by the combined action of the surface and electrical forces was considered. The mathematical models to describe the obtained experimental results were proposed.

Keywords: gas condensate system; dewpoint pressure; filtration; porous medium; slippage effect; gas flow rate; concentration.

References

  1. H.Green, W.Lane. Particulate clouds: dusts, smokes and mists. 2nd Edition. London: E&F Spon Ltd , 1964.
  2. J.W.Amyx, D.M.Bass, Jr.R.L.Whiting. Petroleum reservoir engineering. Physical properties. NY-Toronto-London: McGraw-Hill Book Company Inc., 1960.
  3. H.Carlon, C.Harden. Mass spectrometry of ion-induced water clusters: an explanation of the infrared continuum absorption //Applied Optics. –1980. –Vol.19(11). –P.1776-1786.
  4. M.B.Enghoff, H.Svensmark. The role of atmospheric ions in aerosol nucleation – a review //Atmospheric Chemistry and Physics. – 2008. –Vol.8. –Issue 16. –P.4911-4923.
  5. A.A.Bolotov, A.Kh.Mirzadzhanzade, I.I.Nesterov. Rheological properties of solutions of gases in a liquid in the saturation pressure zone //Fluid Dynamics. –1988. -Vol.23(1). – P.143-146.
  6. B.A.Suleimanov, F.Azizov, E.M.Abbasov. Specific features of the gas-liquid mixture filtration //Acta Mechanica. –1998. –Vol.130. –No.1. –P.121-133
  7. M . R . S i s e n b a y e v a . C h a n g e s i n f o r m a t i o n o i l v i s c o s i t y i n p h a s e c h a n g e a r e a a n d e f f e c t o f S A A « K a r p a t o l - UM2 K - N u r o l » o n b u b b l e - p o i n t p r e s s u r e / / S O C A R P r o c e e d i n g s . - 2 0 1 5 . - N o . 3 . - P . 2 1 - 2 6 .
  8. R.Hosein, R.Mayrhoo, Jr.W.D.McCain. Determination and validation of saturation pressure of hydrocarbon systems using extended Y-function //Journal of Petroleum Science and Engineering. –2014. –Vol. 124. –P.105-113.
  9. M.Muskat. The flow of homogeneous fluids through porous media. Michigan: I.W.Edwards, Inc. Ann Arbor, 1946.
  10. J.Frenkel. Kinetic theory of liquids. NewYork: Dover Publications, 1955.
  11. A.Tompkins. Atmospheric physics. Trieste, Italy: ICTP, 2016.
  12. A.M.Askhabov, M.A.Ryazanov. "Latent" phase clusters - kvatarons - and nucleation //Doklady Physical Chemistry. –1998. –Vol.362(4-6). –P. 335-337
  13. V.A.Akulitchev. Hydratation of ions and the cavitational strength of water //Akusticheskij Zhurnal. –1966. –No.12. –P.160-165.
  14. T.Alty. The origin of the electrical charge on small particles in water //Proceedings of the Royal Society A. – 1926. – Vol. 112. – P. 235-251. 
  15. J.P.Kuenen. On retrograde condensation and the critical phenomena on mixtures of two substances // Communications from the Laboratory of Physics at the University of Leiden by Prof. Dr. Heike Kamerlingh Onnes. –March 1885. –Juny 1894. –No. 1-12. –P.7-14
  16. R.C.Tolman. The superficial density of matter at a liquid vapor boundary. Journal of Chemical Physics. – 1949. – Vol. 17. – P.118-127.
  17. M.Volmer. Kinetics of phase formation. Ohio: Central Air Documents, 1966.
  18. L.J.Klinkenberg. The permeability of porous media to liquids and gases. American Petroleum Institute, 1941.
  19. E.Lauga, M.P.Brenner, H.A.Stone. Microfluidics: the no-slip boundary condition. Ch.15 in Handbook of experimental fluid dynamics. Eds. J.Foss, C.Tropea and A.Yarin. New-York: Springer, 2005.
  20. J.W.G.Tyrrell and P.Attard. Images of nanobubbles on hydrophobic surfaces and their interactions //Physical Review Letters. –2001. –Vol.87. –Article 176104.
  21. A.C.Simonsen, P.L.Hansen, B.Klosgen. Nanobubbles give evidence of incomplete wetting at a hydrophobic interface //Journal of Colloid and Interface Science. –2004. –Vol.273. –P. 291-299.
  22. Y.Zhu, S.Granick. Limits of the hydrodynamic no-slip boundary condition //Physical Review Letters. –2002. -Vol.88. –Article 106102.
  23. D.Tretheway, C.Meinhart. A generating mechanism for apparent fluid slip in hydrophobic microchannels //Physics of Fluids. –2004. –Vol.16. –P.1509-1515.
  24. O.A.Kisileva, V.D.Sobolev, V.M.Starov, N.V.Shurayev. Change in the viscosity of water near quartz surfaces // Colloid Journal. –1979. –Vol. 41(2). –P. 245-250.
  25. J.Lykelma, J.Th.G.Overbeek. On the interpretation of electrokinetic potentials //Journal of Colloid Science. –1961. –Vol.17. –P.501-512.
  26. J.Hirth, G.Pound. Condensation and evaporation. Oxford: Pergamon Press, 1963.
Read more Read less

DOI: 10.5510/OGP20170200313

E-mail: baghir.suleymanov@socar.az


P.A.Revel-Muroz, R.N.Bakhtizin, R.M.Karimov, B.N.Mastobaev

Ufa State Petroleum Technological University, Ufa, Russia

Joint usage of thermal and chemical stimulation technique for transportation of high viscosity and congealing oils


The article summarizes the results of research and theoretical ideas on the influence of high-molecular components on oil rheology and formation of asphaltene-resinparaffin deposits. The industrial experience and the results of laboratory studies of the depressor efficiency and inhibitory ability of the reagents are considered in their use in commercial oils, depending on the pumping temperature. The authors analyzed the influence of the composition of oil on the efficiency of oil-field chemistry, recommendations and proposals for their application in the system of oil trunk pipelines are given.

Keywords: heavy oil; asphaltene deposits; effective viscosity; chemical reagents; rheological effect; high-molecular components; thermal treatment; flow loss.

The article summarizes the results of research and theoretical ideas on the influence of high-molecular components on oil rheology and formation of asphaltene-resinparaffin deposits. The industrial experience and the results of laboratory studies of the depressor efficiency and inhibitory ability of the reagents are considered in their use in commercial oils, depending on the pumping temperature. The authors analyzed the influence of the composition of oil on the efficiency of oil-field chemistry, recommendations and proposals for their application in the system of oil trunk pipelines are given.

Keywords: heavy oil; asphaltene deposits; effective viscosity; chemical reagents; rheological effect; high-molecular components; thermal treatment; flow loss.

References

  1. V.N.Gluschenko, M.A.Silin, J.G.Gerin. Oilfield chemistry. M.: Interkontakt Nauka, 2009.
  2. F.A.Kamenshchikov. Removalasphaltene-resin-paraffin deposits with use of solvents. М.-Izhevsk: ICS, 2008.
  3. V.P.Tronov. Mechanism of formation of tar-paraffin deposits and their control. M: Nedra, 1970.
  4. P.A.Rebinder, G.A.Babalyan, I.I.Kravchenko. The use of surfactants and other chemical reagents in the oil industry. M.: Nedra, 1965.
  5. Yu.V.Lisin, B.N.Mastobaev, A.M.Shammazov, E.M.Movsumzade. Chemical agents at pipeline transportation of oil and oil products. SPb.: Nedra, 2012.
  6. V.V.Novosyolov, P.I.Tugunov, A.I.Zabaznov, E.I.Nigmatullin, E.S.Gordienko. Joint transportation of highviscosity oil and gas condensate through the main condensate pipeline Novy Urengoy - Surgut. - VNIIEGAZPROM. Overview information. Series Transport and underground storage of oil and gas. - 1991.
  7. R.M.Karimov, B.N.Mastobaev. Rheological features of the West Kazakhstan oil blend // Transport and storage of oil products and hydrocarbons. -2011. -№2. -P.3-7.
  8. R.M.Karimov, B.N.Mastobaev. Joint transportation of high viscosity and pour point oil of Western Kazakhstan through the «Uzen-Atyrau-Samara» pipeline //Transport and storage of oil products and hydrocarbons. -2012. -№1. -P.3-6.
  9. R.M.Karimov, B.N.Mastobaev. Peculiarities of pipeline transportation of multicomponent oil systems //Azerbaijan Oil Industry. -2012. -№1. -P.60-63.
  10. R.N.Bahtizin, R.M.Karimov, B.N.Mastobaev. The effect of high-molecular components on flow properties, depending on the structural-group and fractional oil content //SOCAR Proceedings. -2016. –No.1. –Р.42-50.
  11. R.N.Bahtizin, R.M.Karimov, B.N.Mastobaev. The general form of the flow curve of oil and universal rheological model //SOCAR Proceedings. -2016. –No. 2. –Р. 43-49.
  12. F.S.Ismayilov, F.A.Abdulhasanov, R.J.Isayev. Gas treatment efficiency upgrading at off-shore gas condensate field //SOCAR Proceedings. - 2014. -No. 2. -P. 57-61.
  13. R.N.Bakhtizin, A.K.Gallyamov, B.N.Mastobaev and etc. Transport and storage of high-viscosity oils and petroleum products. Application of electric heating. М.: Publishing house «Chemistry», 2004.
Read more Read less

DOI: 10.5510/OGP20170200314

E-mail: karimov_rinat@mail.ru


L.P.Kalacheva, I.I.Rozhin, A.F.Fedorova

Institute of Oil and Gas Problems, Siberian Branch of the RAS, Yakutsk, Russia

The study of the stratum water mineralization influence on the hydrate formation process of the natural gas from the East Siberian platform fields


In the article, the influence of the stratum water mineralization on the process of the natural gas hydrate formation from the Eastern Siberian platform fields differing according to their conditions of occurrence, stratum water mineralization and the natural gas composition was studied. Experimental studies showed that with increasing of the solution mineralization the hydrates of smaller volume are formed, i.e. the inhibitory effect of the stratum water increases.

Keywords: oil and gas fields; stratum temperature and pressure; mineralization of the stratum water; natural gas; thermobaric conditions of hydrate formation; gas hydrates.

In the article, the influence of the stratum water mineralization on the process of the natural gas hydrate formation from the Eastern Siberian platform fields differing according to their conditions of occurrence, stratum water mineralization and the natural gas composition was studied. Experimental studies showed that with increasing of the solution mineralization the hydrates of smaller volume are formed, i.e. the inhibitory effect of the stratum water increases.

Keywords: oil and gas fields; stratum temperature and pressure; mineralization of the stratum water; natural gas; thermobaric conditions of hydrate formation; gas hydrates.

References

  1. S.Sh.Byk, Yu.F.Makogon, V.I.Fomina. Gas hydrates. M.: Khimiya, 1980.
  2. Yu.F.Makogon. Hydrates of natural gases. M.: Nedra, 1974.
  3. V.G.Vasilyev, Yu.F.Makogon, F.A.Trebin, et al. Properties of natural gases to be in Earth's crust in the solid state and to form a gas hydrate deposits. Discoveries of the USSR, 1968-1969. M.: Nedra, 1970.
  4. A.F.Safronov, T.A.Safronov. Geological and economic aspects of development of the Republic of Sakha (Yakutia) oil and gas complex. Yakutsk: Publishing house of YNS SB RAS, 2008.
  5. L.P.Kalacheva, A.F.Fedorova, E.Y.Shitz, I.I.Rozhin. Characteristic patterns in natural gas hydrate composition and structure in deposits of Yakutia //SOCAR Proceedings. - 2015. - No. 3. - P. 4-8.
  6. V.A.Kashirtsev. Organic geochemistry of the East Siberian platform naphthides. Yakutsk: Publishing house YNS SB RAS, 2003.
  7. Waters of oil and gas deposits of the USSR /ed. L.M.Zorkina. M.: Nedra, 1989
  8. V.A.Shirokova. Classifications of natural waters: past, present, future //Tambov University Reports. Series Natural and Technical Sciences. -2013. -Vol.18. -Issue 3. -P.1023-1027.
  9. V.А.Istomin, V.G.Кvоn. Prevention and elimination of gas hydrates in gas production systems. М.: IRC Gazprom, 2004.
  10. E.A.Bondarev, I.I.Rozhin, K.K.Argunova. Hydrate formation at development of the Otradninsky gas condensate field // SOCAR Proceedings. -2014. -No. 4. -P. 46-53.
  11. E.D.Sloan, C.A.Koh. Clathrate hydrates of natural gases. Boca Raton: CRC Press/Taylor & Francis Group, 2008.
Read more Read less

DOI: 10.5510/OGP20170200315

E-mail: lpko@mail.ru


R.R.Sharipov, A.A.Coyedjo, J.M.Quagu, F.I.Gazizova, R.R.Mingazov, N.Yu.Bashkirtseva

Kazan National Research Technological University, Kazan, Russia

Development of reagents for enhanced oil recovery of high-temperature formations


The study was conducted to ascertain the possibility of applying aqueous solutions of zwitter-ionic surfactants as oil displacing reagents. Tests on  oil-displacing capability using bulk models, dynamic viscosity, surfaceactive properties of the aqueous solution were carried out and the results showed ZPAV-3 as the most versatile and effective for reservoirs with low and high temperatures.

Keywords: oil recovery factor; zwitterionic surfactants; oil displacement; dynamic viscosity; surface activity; adsorption.

The study was conducted to ascertain the possibility of applying aqueous solutions of zwitter-ionic surfactants as oil displacing reagents. Tests on  oil-displacing capability using bulk models, dynamic viscosity, surfaceactive properties of the aqueous solution were carried out and the results showed ZPAV-3 as the most versatile and effective for reservoirs with low and high temperatures.

Keywords: oil recovery factor; zwitterionic surfactants; oil displacement; dynamic viscosity; surface activity; adsorption.

References

  1. S.S.Aleksandrov. O problemah i opyte razrabotki trudnoizvlekaemyh zapasov //Neft. Gaz. Promyshlennost. –2012. –No.3. –S.26–27.
  2. V.M.Khusainov, O.V.Magdeeva, M.Sh.Magdeev. Perspectives to build-up the hydrocarbon raw materials at the currently operated oil and gas fields //Neft. Gaz. Novatcii. -2011. –No.4. -P.74-75.
  3. L.M.Petrova, N.A. Abbakumova, T.R.Foss, G.V.Romanov. The mechanism of oil recovery flow-redizecting technologies // Oil industry. –2007 –No.12. –P.64-67.
  4. Yu.A.Poddubny. EOR – frustrated hopes. Area for further actions //Neft. Gaz. Novatcii. –2011. –No. 7. -С.24–35
  5. Sh.K.Gimatudinov. Oil production handbook. M.: Nedra, 1974.
  6. Z.Wu, Z.Yang, L.Cao, G.Wang. Study on performance of surfactant-polymer system in deep reservoir //SOCAR Proceedings. -2016. –No.1. –P.34-41
  7. E.N.Safonov, I.A.Iskhakov, K.Kh.Gaynullin, et al. Application of new techniques for increasing oil recovery at oilfields in Bashkortostan //Oil industry. -2002. –No. 4. –С. 38-40.
  8. V.D.Abdullaev, Кh.M.Ibrahimov, F.K.Kyazimov, T.Kh.Shafiyev. Experimental studies on gas drive and gas-and-water oil displacement //SOCAR Proceedings. -2016. –No. 1. –P. 51-57
  9. A.J.Abitova. Application of flow diverting technology on «Uzen» field //SOCAR Proceedings. -2014. –No.3. –P. 43-51.
  10. A.M.Hajiyev. Control and regulation of reservoir development, characterized by different environmental conditions //SOCAR Proceedings. -2014. –No.2. –P. 38-45
  11. A.M.Gasimli, Sh.F.Musayeva, S.D.Rzayeva, M.G.Abdullayev. Enhanced oil displacement from a layered heterogeneous stratum //SOCAR Proceedings. -2013. –No.2. –P. 53-55. 
  12. N.YU.Bashkirceva, O.YU.Sladovskaya, R.R.Rahmatullin, L.R.Fatkylbayanova. Poverhnostno-aktivnye veshchestva i metody issledovaniya ih svojstv: uchebno-metodicheskoe posobie. Kazan: KGTU, 2009.
  13. D.W.Green, G.P.Willhite. Enhanced oil recovery. Richardson, Texas: Henry L. Doherty Memorial Fund of AIME, Society of Petroleum Engineers, 2013.
  14. M.R.Sisenbayeva. Changes in formation oil viscosity in phase change area and effect of SAA «Karpatol-UM2KNurol » on bubble-point pressure //SOCAR Proceedings. -2015. –No.3. –P. 21-26.
Read more Read less

DOI: 10.5510/OGP20170200316

E-mail: sharipovrustem@yandex.ru


F.R.Mehdiyev, E.Ya.Aliyeva, I.Yu.Silvestrova

«OilGasScientificResearchProject» Institute, SOCAR, Baku, Azerbaijan

Determination of equivalent amounts of liquid hydrocarbons at their commingle transportation


The article considers the problem of total calculation of oil and condensate, pumped through the same transport communications of SOCAR oil fields. The domestic and world experience of comparing the value of various hydrocarbons based on such technical and economic concepts as fuel and oil equivalents is analyzed. Options are proposed for calculating the coefficients of gas condensate replacement for oil "fuel" by thermal equivalents, according to the oil equivalent barrel, by thermal conductivity of liquid hydrocarbons, without recalculating their quantity into conventional fuel.

Keywords: total calculation of oil and gas condensate; standard fuel; fuel equivalent; barrel of oil equivalent; heat of combustion; thermal conductivity coefficient.

The article considers the problem of total calculation of oil and condensate, pumped through the same transport communications of SOCAR oil fields. The domestic and world experience of comparing the value of various hydrocarbons based on such technical and economic concepts as fuel and oil equivalents is analyzed. Options are proposed for calculating the coefficients of gas condensate replacement for oil "fuel" by thermal equivalents, according to the oil equivalent barrel, by thermal conductivity of liquid hydrocarbons, without recalculating their quantity into conventional fuel.

Keywords: total calculation of oil and gas condensate; standard fuel; fuel equivalent; barrel of oil equivalent; heat of combustion; thermal conductivity coefficient.

References

  1. F.S.Ismayilov, F.A.Abdulhasanov, R.J.Isayev. Gas treatment efficiency upgrading at off-shore gas condensate field //SOCAR Proceedings. - 2014. -No. 2. - P. 57-61.
  2. A.Sh.Garalov, I.Y. Silvestrova. Technical approach to advanced oil production planning //SOCAR Proceedings. - 2017. - No. 1. -P.70-74
  3. V.I.Lyashkov. Theoretical foundations of thermal engineering. M.: Mashinostroeniye, 2005.
  4. Metodicheskie poyasneniya pokazatelej statistiki ehnergetiki. Agentstvo po statistike, 2009.
  5. M.G.Rudin, V.Ye.Somov, A.S.Fomin. Pocket reference book of the oil refiner. L.: Chemistry, 1989.
  6. O.F.Glagolev, V.M.Kapustin. Technology of oil refining. Part one. Primary oil refining. M.: Chemistry, 2006.
Read more Read less

DOI: 10.5510/OGP20170200317

E-mail: fuadr.mehdiyev@socar.az