SOCAR Proceedings

SOCAR Proceedings

Published by "OilGasScientificResearchProject" Institute of State Oil Company of Azerbaijan Republic (SOCAR).

SOCAR Proceedings is published from 1930 and is intended for oil and gas industry specialists, post-graduate (students) and scientific workers.

Journal is indexed in Web of Science (Emerging Sources Citation Index), SCOPUS and Russian Scientific Citation Index, and abstracted in EI’s Compendex, Petroleum Abstracts (Tulsa), Inspec, Chemical Abstracts database.

A. G. Novruzov, U. J. Aliyeva, E. A. Alaskarov

«OilGasScientificResearchProject» Institute, SOCAR, Baku, Azerbaijan

Interpretation of dynamic parameters of local anomalies of refracted waves


The «common contour point» (CCP) technique for finding oil and gas deposits is based on identifying simple local minima on the graphs of the amplitude and energy of seismic waves passing through the reservoir. Simple local minima according to the CCP technique are provided by the identification of crossline profile geophones, the stability of the critical angle of the refracted wave, minor changes in the geometric divergence of seismic waves and the source-receiver distance. Other anomalies caused by local inhomogeneities of the geological environment are overcome based on the correlation of the dynamic parameters of waves recorded from different directions in the crossline profile. The article experimentally demonstrates obtaining simple minima by eliminating the distorting effect of local heterogeneity in the upper part of the section, determining the corresponding characteristic points of minima, as well as the contour and depth of the predicted reservoir.

Keywords: oil and gas reservoir; direct search; seismic wave amplitude; local anomaly; «Common contour poin» technique.

The «common contour point» (CCP) technique for finding oil and gas deposits is based on identifying simple local minima on the graphs of the amplitude and energy of seismic waves passing through the reservoir. Simple local minima according to the CCP technique are provided by the identification of crossline profile geophones, the stability of the critical angle of the refracted wave, minor changes in the geometric divergence of seismic waves and the source-receiver distance. Other anomalies caused by local inhomogeneities of the geological environment are overcome based on the correlation of the dynamic parameters of waves recorded from different directions in the crossline profile. The article experimentally demonstrates obtaining simple minima by eliminating the distorting effect of local heterogeneity in the upper part of the section, determining the corresponding characteristic points of minima, as well as the contour and depth of the predicted reservoir.

Keywords: oil and gas reservoir; direct search; seismic wave amplitude; local anomaly; «Common contour poin» technique.

References

  1. Mustafaev, K. A., Novruzov, A. G. (1987). Sposob pryamogo poiska zalezhej nefti i gaza. Avtorskoe svidetel'stvo SSSR № 1340374. 
  2. Novruzov, A. Q., Qedirov, V. Q., Rashidov, A. M. ve b. (2000). Neft və qaz yataqlarinin birbasha ahtarishi usulu. Azerbaycan Respublikasinin Patenti I 2000181. 
  3. Novruzov, A. G. (1990). Razvitie metodiki pryamyh poiskov zalezhej nefti i gaza sejsmorazvedkoj prelomlennymi volnami. Avtoreferat dissertacii na soiskanie uchenoj stepeni kandidata geologo-mineralogicheskih nauk. Baku. 
  4. Kondratev, O. K. (1986). Sejsmicheskie volny v pogloshchayushchih sredah. Moskva: Nedra.
Read more Read less

DOI: 10.5510/OGP20210400608

E-mail: ulvmammadova@gmail.com


R. A. Umurzakov, S. A. Rabbimkulov

Tashkent State Technical University, Tashkent, Uzbekistan

Analysis of the influence of the tectonic factor on the placement of oil and gas deposits of Fergana depression


The article presents the results of studying the relationship between the distribution of oil and gas fields with tectonic factors. It is shown that the quantitative distribution of hydrocarbon deposits depends on the type of neotectonic elements: the maximum falls on stepped zones (31%) and monoclines (22%). In fault zones - 10-15%, in anticlinal zones, uplifts and depressions - 5-7% of the total number of deposits. Based on the analysis of variance, it was found that the strength of the influence of the amplitude of neotectonic movements on the formation of effective volumes of oil, oil and gas and gas deposits is about 40-50% of the total amount of influencing factors. Two independent intervals of the amplitudes of the neotectonic movements, which differ in the nature of the dependence, are noted.

Keywords: neotectonics; deposits; oil and gas; quantitative analysis; analysis of variance; influence; distribution; effective volume.

The article presents the results of studying the relationship between the distribution of oil and gas fields with tectonic factors. It is shown that the quantitative distribution of hydrocarbon deposits depends on the type of neotectonic elements: the maximum falls on stepped zones (31%) and monoclines (22%). In fault zones - 10-15%, in anticlinal zones, uplifts and depressions - 5-7% of the total number of deposits. Based on the analysis of variance, it was found that the strength of the influence of the amplitude of neotectonic movements on the formation of effective volumes of oil, oil and gas and gas deposits is about 40-50% of the total amount of influencing factors. Two independent intervals of the amplitudes of the neotectonic movements, which differ in the nature of the dependence, are noted.

Keywords: neotectonics; deposits; oil and gas; quantitative analysis; analysis of variance; influence; distribution; effective volume.

References

  1. Bordenave, M. L., Hegre, J. A. (2005).The influence of tectonics on the entrapment of oil in the dezful embayment, Zagros Foldbelt, Iran. Journal of Petroleum Geology, 28(4), 339-368. 
  2. Zecheng, W., Wenzhi, Z., Suyun, H., et al. (2017). Control of tectonic differentiation on the formation of large oil and gas fields in craton basins: A case study of SinianeTriassic of the Sichuan Basin. Natural Gas Industry B, 4(2), 141-155. 
  3. Aslanov, B. S., Babayev, N. I. (2018). Possible influencing of neotectonic processes on forming reservoirs in territory of Azerbaijan. SOCAR Proceedings, 1, 37-43. 
  4. Dmitrievskaya, T. V. (1997). Perspektivy neftegazonosnosti Mezenskoj sineklizy po neotektonicheskim dannym. Geologiya Nefti i Gaza, 6, 16-21. 
  5. Panina, L. V., Zaitsev, V. A. (2016). Geodynamics of the Scythian Plate. Electronic Scientific Edition Almanac Space and Time. The Earth Planet System, 11(1). 
  6. Timurziyev, A. I. (2006). Recent tectonics and oil and gas content of the west Turanian plate. Oil and Gas Geology, 1, 32-44. 
  7. Nugmanov, I. I. (2013). Vliyanie neotektonicheskih dvizhenij na razmeshchenie i sohrannost' zalezhej nefti i gaza (na primere Tatarskogo svoda i sklonov prilegayushchih vpadin). Avtoreferat dissertacii na soiskanie uchenoj stepeni kandidata geologo-mineralogicheskih nauk. Kazan: Institut geologii i neftegazovyh tekhnologij, «Kazanskij (Privolzhskij) federal'nyj universitet». 
  8. Akramhodzhaev, A. M., Sajdalieva, M. S. (1971). Ferganskij neftegazonosnyj bassejn. Moskva: Nedra. 
  9. (1977). Strukturno-tektonicheskie predposylki perspektiv neftegazonosnosti Uzbekistana. Tashkent: Fan. 
  10. Sitdikov, B. B. (1985). Neotektonika Zapadnogo Tyan'-Shanya. Tashkent: Fan. 
  11. Sitdikov, B. B. (2009). Geodinamika i neftegazonosnost' Central'noj Fergany. Uzbekskij Zhurnal Nefti i Gaza, 3, 14-15. 
  12. Sidikkhodzhaev, K. R. (2004). Rol' razryvnyh narushenij v formirovanii neftyanyh i gazovyh mestorozhdenij Ferganskoj neftegazonosnoj oblasti. Uzbekskij Zhurnal Nefti i Gaza, 2, 7-9. 
  13. Bikeeva, L. R. (2018). Neotektonicheskie osobennosti stroeniya severo-zapadnoj chasti Buharo-Hivinskogo regiona po dannym kosmogeologicheskih issledovanij. Uzbekskij Zhurnal Nefti i Gaza, 4, 24-29. 
  14. Quirk, D. G., Ruthrauff, R. (2006). Analysis of reserves discovered in petroleum exploration. Journal of Petroleum Geology, 29(2), 125-146. 
  15. Quirk, D. G., Howe, M. J., Archer, S. G. (2017). A combined deterministic-probabilistic method of estimating undiscovered hydrocarbon resources. Journal of Petroleum Geology, 40(3), 217-248. 
  16. Abidov, A. A., Pedder, YU. G., Ahmedov, SH. A. i dr. (1999). Paleogeograficheskie i paleotektonicheskie usloviya razvitiya Ferganskoj vpadiny v neogen-antropogene. Uzbekskij Zhurnal Nefti i Gaza, 3, 6-9. 
  17. Gadoev, A. I. (2010). Paleostrukturnye usloviya formirovaniya Hankyzskoj struktury Yuzhnoj Fergany. Uzbekskij Zhurnal Nefti i Gaza, 2, 7-9. 
  18. Nurmatov, M. R., Holismatov, I. H., YAn Mao Yuan', Bajkobilov, I. T. (2016). Litostratigraficheskaya unifikaciya promyslovyh gorizontov neogenovyh otlozhenij Central'nogo grabena Ferganskogo neftegazonosnogo regiona. Uzbekskij Geologicheskij Zhurnal, 2, 26-29. 
  19. Akramova, N. M., Ahmedzhanova, L. S., Utabova, H. T. i dr. (2019). Ocenka neftegazonosnosti mezozojskih otlozhenij Ferganskogo regiona po geologo-geohimicheskim dannym. Uzbekskij Zhurnal Nefti i Gaza, 2, 14-18. 
  20. Usmanov, P. M. (2005). Prognoz neftenosnosti po neotektonicheskim priznakam. Uzbekskij Zhurnal Nefti i Gaza, 4, 6-7. 
  21. Kim, A. I. (2007). Atlas iskopaemoj fauny i flory fanerozoya Uzbekistana. Tom II. Tashkent: Gosudarstvennyj komitet Respubliki Uzbekistan po geologii i mineral'nym resursam. 
  22. Tal'-Virskij, B. B. (1973). Glubinnoe geologicheskoe stroenie Ferganskoj mezhgornoj vpadiny i ego izuchenie geofizicheskimi metodami. Tashkent: Fan. 
  23. Gmurman, V. E. (1972). Probability theory and mathematical statistics.
Read more Read less

DOI: 10.5510/OGP20210400609

E-mail: umrah@mail.ru


I. Chudyk, A. Velychkovych, Ja. Grydzhuk

Ivano-Frankivsk National Tachnical Univercity of Oil and Gas, Ivano-Frankivsk, Ukraine

A modeling of the inertia properties of a drill string section as a continual bent rotating rod


The article considers the problem of determining the moment of inertia of the bent rotating section of the drill string. The tasks of such a plan are of paramount importance for the dynamic analysis of drill strings in rotary and rotaryturbine drilling methods. Presented are the exact and approximate analytical dependences for determining the moment of inertia of the bent section of the drill string, depending on the geometric parameters of its deflection. Given the scientific and practical interest in the use of pipes made of non-traditional materials, the moments of inertia for bent sections of steel, titanium, aluminum and fiberglass drill pipes are calculated. The nature of the change in the moment of inertia of sections of drill pipes of different diameters depending on the length of the half-wave and the magnitude of the maximum deflection is established.

Keywords: drill string; rod; moment of inertia; deflection boom; deflection half-wave length.

The article considers the problem of determining the moment of inertia of the bent rotating section of the drill string. The tasks of such a plan are of paramount importance for the dynamic analysis of drill strings in rotary and rotaryturbine drilling methods. Presented are the exact and approximate analytical dependences for determining the moment of inertia of the bent section of the drill string, depending on the geometric parameters of its deflection. Given the scientific and practical interest in the use of pipes made of non-traditional materials, the moments of inertia for bent sections of steel, titanium, aluminum and fiberglass drill pipes are calculated. The nature of the change in the moment of inertia of sections of drill pipes of different diameters depending on the length of the half-wave and the magnitude of the maximum deflection is established.

Keywords: drill string; rod; moment of inertia; deflection boom; deflection half-wave length.

References

  1. Goloskov, E. G., Filippov, A. P. (1977). Nestacionarnye kolebaniya deformiruemyh sistem. Kiev: Naukova dumka. 
  2. Pukach, P. Ya. (2012). On the unboundedness of a solution of the mixed problem for nonlinear evolution equation at a finite time. Nonlinear Oscillations, 14(3), 369-378. 
  3. Sesyunin, N. A. (1983). Ob izgibe vesomogo sterzhnya v naklonnoj cilindricheskoj polosti. Izvestiya vuzov. Seriya «Neft' i gaz», 9, 22-25. 
  4. Rojzman, V. P. (2015). O vozmozhnosti sozdaniya bezrezonansnyh konstrukcij, bezkriticheskih rotorov i sterzhnej, ne teryayushchih ustojchivosti pri szhatii. Vibracii v Tekhnike i Tekhnologiyah, 3(79), 38-43. 
  5. Orynyak, I. V., Radchenko, S. A., Batura, A. S. (2007). Raschet sobstvennyh i vynuzhdennyh kolebanij truboprovodnoj sistemy. Soobshchenie 1. Analiz kolebanij prostranstvennoj sterzhnevoj sistemy. Problemy prochnosti, 1, 79-93. 
  6. Yoon, S. Y., Lin, Z., Allaire, P. E. (2013). Introduction to rotor dynamics. In: Control of surge in centrifugal compressors by active magnetic bearings. Advances in industrial control. London: Springer. 
  7. Tadeo, A. T., Cavalca, K. L. (2003). A comparison of flexible coupling models for updating in rotating machinery response. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 25(3), 235-246. 
  8. Velichkovich, A. S., Popadyuk, I. I., Shopa, V. M. (2011). Experimental study of shell flexible component for drilling vibration damping devices. Chemical and Petroleum Engineering, 46(9-10), 518–524. 
  9. Shats’kyi, I. P., Lyskanych, O. M., Kornuta, V. A. (2016). Combined deformation conditions for fatigue damage indicator and well-drilling tool joint. Strength of Materials, 48(3), 469–472. 
  10. Vlasiy, O., Mazurenko, V., Ropyak, L., Rogal, O. (2017). Improving the aluminum drill pipes stability by optimizing the shape of protector thickening. Eastern-European Journal of Enterprise Technologies, 7(85), 25–31. 
  11. Saroyan, A. E. (1990). Teoriya i praktika raboty buril'noj kolonny. Moskva: Nedra. 
  12. Favorin, M. V. (1970). Momenty inercii tel. Spravochnik. Moskva: Mashinostroenie.
Read more Read less

DOI: 10.5510/OGP20210400610

E-mail: jaroslav.gridzhuk@gmail.com


B. A. Suleimanov1, S. J. Rzayeva1, A. F. Akberova1, U. T.  Akhmedova2

1«OilGasScientificResearchProject» Institute, SOCAR, Baku, Azerbaijan; 2SOCAR Downstream Management LLC, Baku, Azerbaijan

Deep diversion strategy of the displacement front during oil reservoirs watering


The goal of this research is to develop formulations for blocking highly permeable zones using cheap, traditional reagents and materials, and to determine the dependence of the position of the blocking screen on the degree of watering of the oil formation in order to maximize the efficiency of oil displacement. Using readily available chemical reagents and biosystems, technology for generating a stable foam system with adjustable rheological properties and providing deep alignment of the displacement front has been developed. In the study, the required penetration depth of the proposed foam system to achieve the maximum effect at different water cuttings was determined; moreover, the effect of pressure on the stability of the foam system generated as a result of decomposition of the biosystem was studied, and the significant effect of gas saturation on the rheology of the foam system was confirmed. It was further established that with a high water-cut (more than 90%), isolation was most effective in the production wells. At a 50% water cut, the deep diversion of the injected fluid gave promising results, however, the best results were achieved using isolation near the discharge line immediately after the water breakthrough in the production wells. 

Keywords: foam system; gas generation; stability; multiplicity; dspersion; rheology; reservoir model; displacement ratio; water cut; penetration depth.

The goal of this research is to develop formulations for blocking highly permeable zones using cheap, traditional reagents and materials, and to determine the dependence of the position of the blocking screen on the degree of watering of the oil formation in order to maximize the efficiency of oil displacement. Using readily available chemical reagents and biosystems, technology for generating a stable foam system with adjustable rheological properties and providing deep alignment of the displacement front has been developed. In the study, the required penetration depth of the proposed foam system to achieve the maximum effect at different water cuttings was determined; moreover, the effect of pressure on the stability of the foam system generated as a result of decomposition of the biosystem was studied, and the significant effect of gas saturation on the rheology of the foam system was confirmed. It was further established that with a high water-cut (more than 90%), isolation was most effective in the production wells. At a 50% water cut, the deep diversion of the injected fluid gave promising results, however, the best results were achieved using isolation near the discharge line immediately after the water breakthrough in the production wells. 

Keywords: foam system; gas generation; stability; multiplicity; dspersion; rheology; reservoir model; displacement ratio; water cut; penetration depth.

References

  1. Bai, B., Huang, F., Liu, Y., Seright, R.S., Wang, Y. (2008, April). Case study on preformed particle gel for in-depth fluid diversion. SPE-113997-MS. In: SPE/DOE Improved Oil Recovery Symposium. Society of Petroleum Engineers. 
  2. Sharifpour, E., Riazi, M., Ayatollahi, S. (2015). Smart technique in water shutoff treatment for a layered reservoir through an engineered injection/production scheme. Industrial & Engineering Chemistry Research, 54(44), 11236-11246. 
  3. Fielding, R. C. Jr., Gibbons, D. H., Legrand, F. P. (1994, April). In-depth drive fluid diversion using an evolution of colloidal dispersion gels and new bulk gels: an operational case history of North Rainbow Ranch Unit. SPE-27773-MS. In: SPE/DOE Ninth Symposium on Improved Oil Recovery. Society of Petroleum Engineers. 
  4. Mack, J. C., Smith, J. E. (1994, April). In-depth colloidal dispersion gels improve oil recovery efficiency.
    SPE-27780-MS. In: SPE/DOE Ninth Symposium on Improved Oil Recovery. Society of Petroleum Engineers. 
  5. Coste, J. P., Liu, Y., Bai, B., et al. (2000, April). In-depth fluid diversion by pre-gelled particles. Laboratory study and pilot testing. SPE-59362-MS. In: SPE/DOE Improved Oil Recovery Symposium. Society of Petroleum Engineers. 
  6. Vishnyakov, V., Suleimanov, B., Salmanov, A., Zeynalov, E. (2020). Primer on enhanced oil recovery. Elsevier. 
  7. Suleimanov, B. A., Veliyev, E. F. (2016, November). Nanogels for deep reservoir conformance control. SPE-182534-MS. In: SPE Annual Caspian Technical Conference & Exhibition. Society of Petroleum Engineers. 
  8. Entov, V. M., Turetskaya, F. D. (1995). Hydrodynamical modeling of the development of nonhomogeneous oil reservoirs. Fluid Dynamics, 30(6), 877-882. 
  9. Shakhverdiev, A. Kh., Suleimanov, B. A., Panakhov, G. М., et al. (2000). Method of oil pool development. Patent RU 2178067. 
  10. Namiot, A. Yu. (1991). Solubility of gases in water. Moscow: Nedra. 
  11. Aarra, M. G., Skauge, A., Solbakken, J., Ormehaug, P.A. (2014). Properties of N2- and CO2- foams as a function of pressure. Journal of Petroleum Science and Engineering, 116, 72-80. 
  12. Holt, T., Vassenden, F., Svorstol, I. (1996, April). Effects of pressure on foam stability; implications for foam screening. SPE-35398-MS. In: SPE/DOE Improved Oil Recovery Symposium. Society of Petroleum Engineers. 
  13. Norouzi, H., Madhi, M., Seyyedi, M.,Rezaee, M. (2018). Foam propagation and oil recovery potential at largedistances from an injection well. Chemical Engineering Research and Design, 135, 67-77. 
  14. Suleimanov, B. А., Mamedov, М. R. (2004). New method of bottom-hole zone foam-acid treatment. ANAS Transactions, 3, 78 – 83. 
  15. Liu, Q., Liu, Sh., Luo, D., Peng, B. (2019). Ultra-low interfacial tension foam system for enhanced oil recovery. Applied Sciences, 9(10), 2155. 
  16. Ahmed, S., Elraies, K. A., Tan, I. M., Hashmet, M. R. (2017). Experimental investigation of associative polymer performance for CO2, foam enhanced oil recovery. Journal of Petroleum Science and Engineering, 157, 971–979. 
  17. Talebian, S. H., Masoudi, R., Tan, I. M., Zitha, P. L. J. (2014). Foam assisted CO2 - EOR: A review of concept, challenges, and future prospects. Journal of Petroleum Science and Engineering, 120, 202–215. 
  18. Awan, A.R., Teigland, R., Kleppe, J. (2008). A survey of North Sea enhanced-oil-recovery projects initiated during the years 1975 to 2005. SPE Reservoir Evaluation and Engineering, 11, 497–512. 
  19. Jones, S. A., Van Der Bent, V., Farajzadeh, R., et al. (2016). Surfactant screening for foam EOR: correlation between bulk and core-flood experiments. Colloids and Surfaces A: Physicochem. Eng. Aspects, 500, 166–176. 
  20. Guo, H., Faber, M. J., Buijse, M. A., Zitha, P. L. (2011, July). A novel alkaline-surfactant-foam EOR process. SPE-145043-MS. In: SPE Enhanced Oil Recovery Conference. Society of Petroleum Engineers. 
  21. Ocampo, A., Restrepo, A., Cifuentes, H., et al. (2013). Successful foam EOR pilot in a mature volatile oil reservoir under miscible gas injection. SPE JPT, 65, 117–119. 
  22. Druetta, P., Raa, P., Picchioni, F. (2018). Plenty of room at the bottom: nanotechnology as solution to an old issue in enhanced oil recovery. Applied Sciences, 8(12), 2596. 
  23. Talebian, S. H., Masoudi, R., Tan, I. M., Zitha, P. L. (2013, July). Foam assisted CO2 - EOR; concepts, challenges and applications. SPE-165280-MS. In: SPE Enhanced Oil Recovery Conference. Society of Petroleum Engineers. 
  24. Ahmed, S., Elraies, K.A., Tan, I.M., Mumtaz, M. (2017). A review on CO2 foam for mobility control: enhanced oil recovery. Singapore: Springer. 
  25. Vasil'ev, V. K., Bykova, T. I., Markin, A. A. (1976). Ustojchivost' peny pod davleniem. Neftepromyslovoe Delo, 5, 27-28. 
  26. Suleimanov, B. A. (2006). Filtration features of heterogeneous systems. Moscow-Ijevsk: Institute of Computer Sciences.
Read more Read less

DOI: 10.5510/OGP20210400611

E-mail: Baghir.Suleymanov@socar.az


Y. Sh. Seitkhaziyev

Atyrau branch of KMG Engineering, Atyrau city, Kazakhstan

Geochemical studies of gases from oil and gas fields in the southern part of the caspian basin and their correlation with the results of oil geochemistry


This article presents the results and interpretation of the compositional and isotopic analysis of carbon in 14 gas samples derived from oil and gas fields and structures (Liman, East Makat, North Kotyrtas, Zholamanov, S. Nurzhanov and West Prorva) of the southern part of Pre-Caspian basin. According to the results of this study, all gases have a thermogenic source and their organic matters were deposited in the marine environment, which is also consistent with the results of biomarker analysis of oils from these studied fields. A sharp enrichment of propane with heavy carbon isotope in gas №55 of East Makat field suggests its biodegradation, which is also confirmed by the results of gas chromatographic analysis of oil from this well. A star diagram of gases was plotted based on normalized values of carbon isotopic composition of C1-C5, according to the results of which the studied samples can be divided into 5 genetically different groups. The identified groups based on results of this gas analysis are also consistent with the results of «fingerprinting» of oil from these fields.

Keywords: gas composition; gas isotopic composition; Rayleigh fractionation; Bernard diagram; Clayton diagram; Laurent diagram; Chung diagram; enrichment in heavy isotope.

This article presents the results and interpretation of the compositional and isotopic analysis of carbon in 14 gas samples derived from oil and gas fields and structures (Liman, East Makat, North Kotyrtas, Zholamanov, S. Nurzhanov and West Prorva) of the southern part of Pre-Caspian basin. According to the results of this study, all gases have a thermogenic source and their organic matters were deposited in the marine environment, which is also consistent with the results of biomarker analysis of oils from these studied fields. A sharp enrichment of propane with heavy carbon isotope in gas №55 of East Makat field suggests its biodegradation, which is also confirmed by the results of gas chromatographic analysis of oil from this well. A star diagram of gases was plotted based on normalized values of carbon isotopic composition of C1-C5, according to the results of which the studied samples can be divided into 5 genetically different groups. The identified groups based on results of this gas analysis are also consistent with the results of «fingerprinting» of oil from these fields.

Keywords: gas composition; gas isotopic composition; Rayleigh fractionation; Bernard diagram; Clayton diagram; Laurent diagram; Chung diagram; enrichment in heavy isotope.

References

  1. Seitkhaziyev, Y. Sh, Uteyev, R. N, Sarsenbekov, N. D. Tassemenov, Y. R. (2020). Integrating biomarker analysis with carbon stable isotope signatures for genetic classification and tracing possible migration pathways of hydrocarbon of Pre-Caspian Basin. SPE-202514-MS. In: SPE Annual Caspian Technical Conference. Society of Petroleum Engineers. 
  2. Sejthaziev, E. SH., Uteev, R. N., Sarsenbekov, N. D. i dr. (2020). Geohimicheskij atlas po «fingerprintingu» nefti mestorozhdenij AO «Embamunajgaz». Vestnik neftegazovoj otrasli Kazahstana, 3, 61-70. 
  3. Gaspar, J., Davis, D., Camacho, C., Alvares, J. (2016). Biogenic vs thermogenic H2S source determination in bakken wells: considerations for biocide application. In: 2016 American Chemical Society. Environmental Science Technical Letter, 3, 127-132. 
  4. Matyasik, I., Spunda, K., Kania, M., Wencel, K. (2018). Genesis of hydrogen sulfide in carbonate reservoirs. Journal «Nafta-gas», 9, 627-635. 
  5. Zhongying, M., Jianfa, C., Jing, W., Guannan, W. (2012). Application of butane geochemistry of natural gas in hydrocarbon exploration. Petroleum Science, 9, 455-462. 
  6. Dakhnova M.V., Kiselev S.M., Bazhenova T.K., Lebedev V.S. (2011). Isotopic criteria for predicting the phase composition of hydrocarbons in riphean and vendian deposits of the Lena-Tunguska petroleum province. Russian Geology and Geophysics, 52(8), 945-953.
Read more Read less

DOI: 10.5510/OGP20210400612

E-mail: Seitkhaziyev.Y@llpcmg.kz


H.Kh. Malikov1, Sh.Z. Ismayilov1, A.A. Suleymanov*1, B.F. Novruzaliyev2

1Azerbaijan State Oil Academy, Baku, Azerbaijan; 2«OilGasScientificResearchProject» Institute, SOCAR, Baku, Azerbaijan

Experimental investigation of nucleation process in gas-condensate systems at the pressure above the dew point


The paper summarizes the experimental results on gas-condensate mixtures densities change at pressures higher than the dew point curve in free volume and in porous medium. Based on the experiments conducted, gas-condensate mixture density reduction effect at pressures exceeding the dew point pressure was revealed, and this effect is related to a new phase nuclei formation, or nucleation. The obtained results allow clarifying the new phase micronuclei formation and development mechanism in the gas-condensate systems at pressures above the dew point pressure.

Keywords: gas-condensate; nucleation; dew point pressure; density; porous media.

The paper summarizes the experimental results on gas-condensate mixtures densities change at pressures higher than the dew point curve in free volume and in porous medium. Based on the experiments conducted, gas-condensate mixture density reduction effect at pressures exceeding the dew point pressure was revealed, and this effect is related to a new phase nuclei formation, or nucleation. The obtained results allow clarifying the new phase micronuclei formation and development mechanism in the gas-condensate systems at pressures above the dew point pressure.

Keywords: gas-condensate; nucleation; dew point pressure; density; porous media.

References

  1. Buevich, Yu. A. (1987). On subcritical nucleation in liquid with surfactant. Journal of Engineering Physics and Thermophysics, 52(3), 394-402. 
  2. Davies, S. R. (2006). Nucleation theory. USA, Colorado School of Mines: Golden. 
  3. Mirzajanzade, A. Kh., Khasanov, M. M., Bakhtizin, R. N. (1999). Studies on modeling of complex systems of oil production. Nonlinearity, nonequilibrium, heterogeneity. Ufa: Gilem. 
  4. Bolotov, A. A., Mirzadzhanzade, A. Kh., Nesterov, I. I. (1988). Rheological properties of solutions of gases in a liquid in the saturation pressure zone. Fluid Dynamics, 23, 143-146. 
  5. Melikov, G. H. (1987). Issledovanie vliyaniya neravnovesnosti na gidrodinamicheskie harakteristiki gazozhidkostnyh sistem pri davleniyah vyshe davleniya nasyshcheniya. Dissertaciya na soiskanie uchenoj stepeni kandidata tekhnicheskih nauk. Baku: AzINEFTEKHIM. 
  6. Suleimanov, B. A. (2006). Filtration features of heterogeneous systems. Moscow-Ijevsk: Institute of Computer Sciences. 
  7. Bauget, F., Lenormand, R. (2002, September). Mechanisms of bubble formation by pressure decline in porous media: a critical review. SPE-77457-MS. In: SPE Annual Technical Conference. San Antonio, USA. Society of Petroleum Engineers. 
  8. Turta, A., Fisher, D. B., Goldman, J., et al. (2002, June). Experimental investigation of gas release and pressure response in foamy-oil depletion tests. PETSOC-2002-186. In: Canadian International Petroleum Conference, Calgary, Canada. 
  9. Alshmakhy, A., Maini, B. B. (2011, November). Foaminess and viscosity effects in heavy oil flow. SPE145231-MS. In: Canadian Unconventional Resources and International Petroleum Conference. Calgary, Canada. Society of Petroleum Engineers. 
  10. Busahmin, B. S., Maini, B. B. (2010, October). Effect of solution-gas-oil-ratio on performance of solution gas drive in foamy heavy oil systems. SPE-137866-MS. In: Canadian Unconventional Resources and International Petroleum Conference. Calgary, Canada. Society of Petroleum Engineers. 
  11. Meyer, V., Pilliez, J., Creux, P., et al. (2007, November). Gas bubble nucleation of extra-heavy oils in porous media: a new computerized tomography technique and physical approach. SPE-110468_MS. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers. 
  12. Suleymanov, A. A. (1989). Eksperimental'nye issledovaniya fil'tracii gazokondensatnyh sistem dlya razrabotki sposobov povysheniya proizvoditel'nosti skvazhin. Dissertaciya na soiskanie uchenoj stepeni kandidata tekhnicheskih nauk. Baku: AzINEFTEKHIM. 
  13. Babaev, R. D., Sulejmanov, A. A. (1988). Processy zarodysheobrazovaniya v gazozhidkostnyh sistemah /v sbornike nauchnyh trudov «Geofizicheskie problemy neftegazopromyslovoj mekhaniki». Baku: AzINEFTEKHIM. 
  14. Abdel' Monejm, M. A. (1992). Eksperimental'noe issledovanie processa zarodysheobrazovaniya v gazokondensatnyh sistemah. Dissertaciya na soiskanie uchenoj stepeni kandidata tekhnicheskih nauk. Baku: AzINEFTEKHIM.
  15. Shahiduzzaman, M. (1994). Ekspepimental'nye issledovaniya vliyaniya processa zarodysheobrazovaniya na istoshchenie gazokondensatnyh sistem. Dissertaciya na soiskanie uchenoj stepeni kandidata tekhnicheskih nauk. Baku: AzINEFTEKHIM. 
  16. Babaev, R. D., Suleymanov, A. A., Shahiduzzaman, M. (1997). Experimental study of unsteady state filtration of gas condensate system at the pressure above the dew point. Energy Sources, 19(3), 245-248. 
  17. Al-Meshari, A., Kokal, S., Al-Muhainy, A., et al. (2007, November). Measurement of gas condensate, near-critical and volatile oil densities, and viscosities at reservoir conditions. SPE-108434-MS. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers. 
  18. Suleimanov, B. A., Suleymanov, A. A., Abbasov, E. M., Baspayev, E. T. (2018). A mechanism for generating the gas slippage effect near the dewpoint pressure in a porous media gas condensate flow. Journal of Natural Gas Science and Engineering, 53, 237-248. 
  19. Visintin, A. (1998). Introduction to the models of phase transitions. Bollettino dell’Unione Matematica Italiana, Serie 8, 1-B(1), p. 1–47. 
  20. Suleimanov, B. A., Azizov, Kh. F., Abbasov, E. M. (1998). Specific features of the gas-liquid mixture filtration. Acta Mechanica, 130(1-2), 121-133. 
  21. Overbeek, J. T. G. (1952). Electrochemistry of the double layer. Colloid Science, Irreversible Systems. Amsterdam: Elsevier. 
  22. Jouniaux, L., Zyserman, F. (2016). A review on electrokinetically induced seismo-electrics, electro-seismics, and seismo-magnetics for Earth sciences. Solid Earth, 7, 249-284. 
  23. Landau, L. D., Ahiezer, A. I., Lifshic, E. M. (1969). Mekhanika i molekulyarnaya fizika. Moskva: Nauka. 
  24. Matveev, A. N. (1981). Molekulyarnaya fizika. Moskva: Vysshaya shkola. 
  25. Butt, H.-J., Graf, K., Kappl, M. (2006). Physics and chemistry of interfaces. Weinheim: Wiley-VCH. 
  26. Askhabov, А. М. (2006). Cluster (quataron) mechanism of liquid water formation. Zapiski RMO (Proceedings of the Russian Mineralogical Society), 135(1), 123-129. 
  27. Bunkin, N. F., Bunkin, F. V. (1992). Bubbstons: stable microscopic gas bubbles in very dilute electrolytic solutions. Journal of Experimental and Theoretical Physics, 101, 512-527.
Read more Read less

DOI: 10.5510/OGP20210400613

E-mail: petrotech@asoiu.az


M.S. Khalilov

Baku State University, Baku, Azerbaijan

About improving the efficiency of the development of gas condensate deposits with oil rims


On the basis of a two-phase two-dimensional mathematical model, the process of developing gas condensate fields with oil springs was investigated during the implementation of the technological approach, according to which the gas extracted from the gas cap returns to the oil part after separation by injection wells drilled in oil-water contacts. It has been established that the injection of separated gas into water-oil contact reduces the value of residual oil saturation in the flushed zone with gas, since not only mobile oil evaporates, but also capillary bound, increasing the displacement ratio, and, ultimately, the efficiency of reservoir development is ensured.

Keywords: Gas condensate reservoir with oil spills; Injection of separated gas; Oil recovery coefficient; Potential condensate content; Stable and evaporated oil production.

On the basis of a two-phase two-dimensional mathematical model, the process of developing gas condensate fields with oil springs was investigated during the implementation of the technological approach, according to which the gas extracted from the gas cap returns to the oil part after separation by injection wells drilled in oil-water contacts. It has been established that the injection of separated gas into water-oil contact reduces the value of residual oil saturation in the flushed zone with gas, since not only mobile oil evaporates, but also capillary bound, increasing the displacement ratio, and, ultimately, the efficiency of reservoir development is ensured.

Keywords: Gas condensate reservoir with oil spills; Injection of separated gas; Oil recovery coefficient; Potential condensate content; Stable and evaporated oil production.

References

  1. Kosachuk, G. P., Bilalov, F. R. (2009). Ocenka koefficienta izvlecheniya nefti neftegazovyh mestorozhdenij s neftyanoj otorochkoj. Gazovaya Promyshlennost', Specical'nyj vypusk, 19-22. 
  2. Panfilov, N. B. (1994). Edinaya koncepciya razrabotki slozhnopostroennyh neftegazovyh mestorozhdenij /obzornaya informaciya, seriya «Razrabotka i ekspluataciya gazovyh i gazokondensatnyh mestorozhdenij». Moskva: IRC Gazprom. 
  3. Lyugaj, D. V. (2010). Osobennosti osvoeniya i proektirovaniya razrabotki CHayandinskogo NGKM. Gazovaya Promyshlennost', 1, 56-58. 
  4. Ibragimov, I. I. (2009). Obosnovanie racional'nyh tekhnologicheskih parametrov razrabotki gorizontal'nymi skvazhinami neftyanyh otorochek gazokondensatnyh zalezhej. Dissertaciya na soiskanie uchenoj stepeni kandidata tekhnicheskih nauk. Moskva: RGUNG. 
  5. (2000). Sovershenstvovanie tekhnologij razrabotki mestorozhdenij nefti i gaza /pod red. Zakirova S.N. Moskva: Graal'. 
  6. Zheltov, Yu. P., Ryzhik, V. M., Martos, V. N. (1969). Razrabotka neftegazokondensatnyh zalezhej s podderzhaniem plastovogo davleniya zakachkoj vody. Fiziko-geologicheskie faktory pri razrabotke neftyanyh i neftegazokondensatnyh mestorozhdenij. Moskva: Nedra. 
  7. Zakirov, S. N. (1998). Razrabotka gazovyh, gazokondensatnyh i neftegazo-kondensatnyh mestorozhdenij. Moskva: Struna. 
  8. Afanas'eva, F. I., Zinov'eva, L. A. (1980). Analiz razrabotki neftegazovyh zalezhej. Moskva: Nedra. 
  9. Burakova, S. V., Izyumchenko, D. V., Minakov, I. I. i dr. (2013). Problemy osvoeniya tonkih neftyanyh otorochek gazokondensatnyh zalezhej Vostochnoj Sibiri (na primere botuobinskoj zalezhi Chayandinskogo NGKM). Nauchno-Tekhnicheskij Sbornik «Vesti Gazovoj Nauki», 5(16), 124-133. 
  10. Amelin, N. D. (1980). Osobennosti razrabotki neftegazovyh zalezhej. Moskva: Nedra. 
  11. Fejzullaev, H. A. (2011). Sovershenstvovanie modelirovaniya gidrogazodi-namicheskih osnov razrabotki glubokozalegayushchih gazokondensatnyh mestorozhdenij. Dissertaciya na soiskanie uchenoj stepeni doktora tekhnicheskih nauk. Baku. 
  12. Mitlin, V. S. (1986). Novye metody rascheta vozdejstviya obogashchennogo gaza na gazokondensatnyj plast. Dissertaciya na soiskanie uchenoj stepeni kandidata tekhnicheskih nauk. Moskva: VNIIGAZ. 
  13. Brusilovskij, A. I. (2002). Fazovye prevrashcheniya pri razrabotke mestorozh¬denij nefti i gaza. Moskva: Graal'. 
  14. Abbasov, Z. YA. (1993). Metody rascheta staticheskogo dinamicheskogo zabojnogo davleniya v gazovyh i gazokondensatnyh skvazhinah. Baku: Elm.
Read more Read less

DOI: 10.5510/OGP20210400614

E-mail: khalilov_mubariz@mail.ru


K.Sh. Jabbarova

«OilGasScientificResearchProject» Institute, SOCAR, Baku, Azerbaijan

Assessment of the possibilities of using nanostructured composition to prevent salt deposition in oil production processes


The article is devoted to the development of a nanostructured composition that can prevent salt deposition of highly mineralized reservoir waters in the technological processes of oil production. The protective effect of nanostructured compounds formed by surfactants and their compositions together with graphene, taunite, and fullerene nanoparticles against salt deposition has been studied, and their high activity against salt crystals in reservoir waters and an increase in the induction cycle of salt deposition were established. 

Keywords: salt deposition; nanoparticle; graphene; taunite; fullerene; surfactant; polymer; inhibitor.

The article is devoted to the development of a nanostructured composition that can prevent salt deposition of highly mineralized reservoir waters in the technological processes of oil production. The protective effect of nanostructured compounds formed by surfactants and their compositions together with graphene, taunite, and fullerene nanoparticles against salt deposition has been studied, and their high activity against salt crystals in reservoir waters and an increase in the induction cycle of salt deposition were established. 

Keywords: salt deposition; nanoparticle; graphene; taunite; fullerene; surfactant; polymer; inhibitor.

References

  1. Kashchavcev, V. E. (2004). Rol' plastovyh vod v processe osadkoobrazovaniya solej pri dobyche nefti. Neft', gaz i biznes, 1, 42-45. 
  2. Kashchavcev, V. E., Mishchenko, I. T. (2001). Prognozirovanie i kontrol' soleosazhdeniya pri dobyche nefti. Moskva: Neft' i gaz. 
  3. Kashchavcev, V. E., Mishchenko, I. T. (2004). Soleobrazovanie pri dobyche nefti. Moskva: Orbita-M.
  4. Rustamov, CH. F., Gordeev, YA. I., SHihieva, L. A., Bagirov, O. T. (2009). K voprosu realizacii tekhnologii novoj kompozicionnoj sistemy dlya bor'by s soleosazhdeniyami. Neftegazovoe Delo, 1, 1-11. 
  5. (2000). Compound for prevention of carbonate, sulfate and iron oxide deposits. Patent RU 2146232. 
  6. Perekupka, A. G., Zaraeva, J. S., Mashoshina, A. A. (2008). Composition for equipment protection from corrosion and inorganic salt deposits. Patent RU 2324005. 
  7. Kalyukova, E. N. (2008). Titrimetricheskie metody analiza. Ul'yanovsk: UlGTU. 
  8. Tkachev, A. G. (2007). Uglerodnyj nanomaterial «Taunit» - struktura, svojstva, proizvodstvo i primenenie. Perspektivnye Materialy, 3, 5-9. 
  9. Tkachev, A. G., Mischenko, S. V., Artemov, V., et al. (2006). Carbon nanomaterials "taunit": research production application. Nanotechnics, 2, 17-21. 
  10. Bulatova, I. M. (2011). Grafen: svojstva, poluchenie, perspektivy primeneniya v nanotekhnologii i nanokompozitah. Vestnik KTU, 10, 45-48. 
  11. Eleckij, A. V., Smirnov, B. M. (1993). Fullereny. Uspekhi fizicheskih nauk, 2, 33-58. 
  12. Eleckij, A. V., Smirnov, B. M. (1995). Fullereny i struktury ugleroda. Uspekhi fizicheskih nauk, 165(9), 977-1009. 
  13. Shahbazov, E. G., Kazimov, E. A., Jabbarova, K. Sh. (2019). Complex decision of sand control on the basis of nanoframe technology. Construction of Oil and Gas Wells on Land and Sea, 1, 47-49. 
  14. http://nanotc.ru/ 
  15. http://www.akkolab.ru 
  16. http://www.neotechproduct.ru/ 
  17. http://karbokam.ru/
Read more Read less

DOI: 10.5510/OGP20210400615

E-mail: jabbarova.k@gmail.com


M.A. Jamalbayov*1, Kh.M. Ibrahimov1, T.M. Jamalbayli2

1«OilGasScientificResearchProject» Institute, SOCAR, Baku, Azerbaijan; 2Azerbaijan State Oil and Industry University, Baku, Azerbaijan

Determination the initial value and change behaviour of the reservoir permeability via two field measurements


The paper proposes a technique for interpreting the results of hydrodynamic studies of volatile and non-volatile oil wells at two steady-state regimes in order to determine the initial value and coefficient of variation in effective permeability of the reservoir. It is developed based on a binary filtration model, where the hydrocarbon system is represented as consisting of two pseudocomponents and two phases, between which mass transfer of hydrocarbons takes place. The proposed methodology requires well flow rates measured at two different steady-state well conditions for two different reservoir pressures and thermodynamic data of the hydrocarbon system at reservoir conditions. The methodology has been validated using examples of hypothetical volatile and non-volatile oil reservoirs at different rock deformation ratios and for nondeformable reservoirs. It has also been tested under different development stages and measurement conditions. For this purpose, a computer simulation of the oil reservoir depletion process was carried out, the results of which were used as well test data. Satisfactory accuracy and reliability of the outlined approach has been established. As deviations of calculated values of required parameters from their actual values did not exceed 8%. 

Keywords: permeability; reservoir deformation; data interpretation; üell test; coefficient of permeability variation; volatile oil.

The paper proposes a technique for interpreting the results of hydrodynamic studies of volatile and non-volatile oil wells at two steady-state regimes in order to determine the initial value and coefficient of variation in effective permeability of the reservoir. It is developed based on a binary filtration model, where the hydrocarbon system is represented as consisting of two pseudocomponents and two phases, between which mass transfer of hydrocarbons takes place. The proposed methodology requires well flow rates measured at two different steady-state well conditions for two different reservoir pressures and thermodynamic data of the hydrocarbon system at reservoir conditions. The methodology has been validated using examples of hypothetical volatile and non-volatile oil reservoirs at different rock deformation ratios and for nondeformable reservoirs. It has also been tested under different development stages and measurement conditions. For this purpose, a computer simulation of the oil reservoir depletion process was carried out, the results of which were used as well test data. Satisfactory accuracy and reliability of the outlined approach has been established. As deviations of calculated values of required parameters from their actual values did not exceed 8%. 

Keywords: permeability; reservoir deformation; data interpretation; üell test; coefficient of permeability variation; volatile oil.

References

  1. Dubrule, O., Haldorsen, H. H. (1986). Geostatistics for permeability estimation /in «Reservoir Characterization», eds. Lake, L. W. and Caroll, H. B., Jr. New York: Academic Press. 
  2. Guo, J. (2015, October). Estimation of permeability and viscoelastic properties of shale by threepoint bending test. In: 2015 SEG Annual Meeting, New Orleans, Louisiana. 
  3. Wendt, W. A., Sakurai, S., Nelson, P. H. (1986). Permeability prediction from well logs using multiple regression /in «Reservoir Characterization», eds. Lake, L. W. and Caroll, H. B., Jr. New York: Academic Press. 
  4. Yuan, Y., Rahman, S., Wang, J., Gholizadeh Doonechaly, N. (2015, November). An innovative technique for estimation of permeability of shale gas reservoirs. SPE-176971-MS. In: SPE Asia Pacific Unconventional Resources Conference and Exhibition. Society of Petroleum Engineers. 
  5. Jamalbayov, M., Hasanov, I., Valiyev, N., Ibrahimov, K. (2020, August). Mathematical modeling of the depletion of a compacting gas-condensate reservoir with creeping effects. In: COIA-2020. Proceedings of the 7th International Conference on Control and Optimization with Industrial Applications. 
  6. Gorbunov, А. Т. (1981). Development of abnormal oil fields. Moscow: Nedra. 
  7. Hasanov, М. М., Spivak, S. I., Yulmuhametov, D. R. (2005). Permeability determination from log data as an incorrectly set problem. Oil and Gas Business, 3(1), 155-166. 
  8. Shor, Ya. B. (1962). Statistical methods of analysis and control of quality and reliability. Moscow: Gosenergoizdat. 
  9. Valiyev, N. A. (2020, August). An algorithm to predict indicators of the light oil-water displacement process in relaxation-deformable formations. In: COIA-2020. Proceedings of the 7th International Conference on Control and Optimization with Industrial Applications. 
  10. Jamalbayov, М. A., Valiyev, N. A., Mahamat Zene, M. T. (2021). Imitation modelling of pumpwell-reservoir systems equipped with submersible rod-free pumps. Automation, Telemechanization and Communication in Oil Industry, 2(571), 49-54. 
  11. Salavatov, T. Sh., Hasanov, I. R. (2020). Determining hydraulic resistance with the binomial law of filtration of hydrocarbons in a porous medium with allowance for the influence of the initial gradient. Journal of Engineering Physics and Thermophysics, 93(6), 1387-1393. 
  12. Hasanov, I. R. (2020, August). An approximate method for solving the problem of elastic mode theory for one-dimensional translational fluid motion taking into account the limiting pressure gradient. In: COIA-2020.
Read more Read less

DOI: 10.5510/OGP20210400616

E-mail: mehemmed.camalbeyov@socar.az


F.S.Ismailov, Sh.P.Kazimov, L.G. Hadjikerimova

«OilGasScientificResearchProject» Institute, SOCAR, Baku, Azerbaijan

Innovative developments of sucker rod pumps to improve the performance of sand producing wells


At the last stage of oil field development, the use of sucker rod pumps is widespread. Due to the drop in formation pressure and other reasons, the inflow of fluid into the well is reduced. The efficiency of the pumps decreases, the pump cylinder is not completely filled. To eliminate these obstacles, a new submersible pump has been developed with a intake valve, which opens and closes with the movement of the balance head. In flooded and sandy wells, sand destroys the working parts of the pump, especially the gap between the plunger-cylinder pair, as a result reduced productivity of the pump. The new pump design allows solving the problem by emulsifying part of the product. The operation of the pump is mathematically justified. 

Keywords: well; well bottom; liquid; sand; pump; pump suspension depth; pump intake; plunger-cylinder; leakage; emulsion

At the last stage of oil field development, the use of sucker rod pumps is widespread. Due to the drop in formation pressure and other reasons, the inflow of fluid into the well is reduced. The efficiency of the pumps decreases, the pump cylinder is not completely filled. To eliminate these obstacles, a new submersible pump has been developed with a intake valve, which opens and closes with the movement of the balance head. In flooded and sandy wells, sand destroys the working parts of the pump, especially the gap between the plunger-cylinder pair, as a result reduced productivity of the pump. The new pump design allows solving the problem by emulsifying part of the product. The operation of the pump is mathematically justified. 

Keywords: well; well bottom; liquid; sand; pump; pump suspension depth; pump intake; plunger-cylinder; leakage; emulsion

References

  1. Ismayilov, F. S., Hasanov, F. Q., Bayramov, S. B. (2019). Kombine edilmish quyu nasos qurgusu. Azerbaycan Respublikasinin Patenti I 20190093. 
  2. Shashkin, M. A. (2010). Primenyaemye v TPP «Langepasneftegaz» metody zashchity dlya snizheniya negativnogo vliyaniya mekhanicheskih primesej na rabotu GNO. Inzhenernaya praktika, 2, 26-30. 
  3. Gizatullin, F. A., Khakimyanov, M. I., Khusainov, F. F. (2017). Features of electric drive sucker rod pumps for oil production. Journal of Physics: Conference Series, 944, 012039. 
  4. Pyalchenko, D. V. (2016). Investigation of the effect of producing wells parameters on waivers rod pumping units. Internet-jurnal «Naukovedeniye», 8(2), 1-10. 
  5. Bachtizin, R. N., Urazakov, K. R., Latypov, B. M., Ishmuchametov, B. H. (2016). Fluid leakage in a sucker-rod pump with regular micro-relief at surface of the plunger. Oil and Gas Business, 14(4), 33-39. 
  6. Gurbanov, R. S., Mamedov, М. А, Gurbanova, Т.G. (2015). Development of the sealing method of the pump clearance by well production. Eastern European Journal of Enterprise Technologies, 5/1(77), 59-62. 
  7. Molchanov, A. G. (2014). Puti dal'nejshego sovershenstvovaaniya shtangovyh glubinnyh nasosnyh ustanovok. Moskva: OOO «Burneft'». 
  8. Ekspluataciya skvazhin shtangovymi nasosami http://leksia.comx4258.html 
  9. Skvazhinniye shtangoviye nasosy http://info-neft.ru/php?action=full_article&id=80 
  10. Uluchshenie ekspluatacii skvazhiny shtangovymi nasosami http://www.megadomoz.ru/article1158/274 
  11. Shtangovye skvazhinnye nasosy http://glavteh.ru/files/InPraktika_1_2010_15_Anufriev.pdf 
  12. Elgin, A. S., Maksimova, YU. A. (2016). Usovershenstvovanie processa ekspluatacii skvazhin ustanovkami shtangovogo glubinnogo nasosa. Tomsk: Tomskij politekhnicheskij universitet.
Read more Read less

DOI: 10.5510/OGP20210400617

E-mail: lpko@mail.ru


Q.Q.Ismayilov1, Q.I.Dzhalalov2, N.M.Safarov3

1Azerbaijan State University Oil and Industry, Baku, Azerbaijan; 2Azerbaijan National Akademy of Sciences, Baku, Azerbaijan; 3«OilGasScientificResearchProject» Institute, SOCAR, Baku, Azerbaijan

About one interpretation of the phenomenon of «phase inversion» in rheologically difficult water-oil emulsions


This article gives a relatively new interpretation of the characteristic phenomenon of "phase inversion" in water-oil emulsions, created on the basis of non-Newtonian oils from fields in Azerbaijan. An analysis of the results obtained showed that an increase in the water-cut threshold in these emulsions has a strong effect on their rheological characteristics and leads to noticeable microstructural changes. 

Keywords: non-newtonian oils; formation flooding; oil-water emulsion; relative viscosity; phase inversion; dispersion.

This article gives a relatively new interpretation of the characteristic phenomenon of "phase inversion" in water-oil emulsions, created on the basis of non-Newtonian oils from fields in Azerbaijan. An analysis of the results obtained showed that an increase in the water-cut threshold in these emulsions has a strong effect on their rheological characteristics and leads to noticeable microstructural changes. 

Keywords: non-newtonian oils; formation flooding; oil-water emulsion; relative viscosity; phase inversion; dispersion.

References

  1. Mirzajanzadeh А.Х., Аliyev N.А., Yusifzadeh Х.B. et al. Fragments of the development of offshore oil and gas fields. Baku,«Elm», 1997, 408 p. 
  2. Аntipin Yu.V., Valeev М.D., Sirtlanov А.Sh. Prevention of complications in the production of watered oil, Ufa, Russia, 1987, 168 p. 
  3. Mirzajanzadeh А.Х., Кovalyov А.Q., Заytsev Yu.V. Features of exploitation of anomalous oil fields, Moscow, «Nedra», 1972, 286 p. 
  4. Oliveira R.C.G. and Goncalves M.A.L. Emulsion Rheology-Theory vs. Field Observation // Papers presented at Offshore Technology Conference, OCT-17386, Houston TX, May 2005. 
  5. Orr R. Phase Inversion in Heavy Crude Oil Production // Proceedings of Teknas Conference on Heavy Oil Technology for Offshore Applications 14-15 May 2009, Stavanger, Norway. 
  6. Frolov U.Q. Colloidal chemistry course. Surface phenomena and dispersion systems. Мoscow,«Ximiya»,1982, 399 p. 
  7. Kireev V.А. A short course in physical chemistry. // 5th Edit., stereotypical Мoscow, «Хimiya» 1978, 624 p. 
  8. Tadros T.F.. Emulsion Science and Technology / WILEY-VCH Verlag GmbH and Co. KGaA, 2009, Weinheim, Germany, 545 p. 
  9. Safiyeva R.Z., Мagadova L.А., Кlimova L.Z., Borisova О.А. Physicochemistry chemical properties of oil dispersed systems. / Editor - prof. V. N. Koshelev / Moscow, Gubkin Russian State University of Oil and Gas, 2001, 60 p. 
  10. Alwadani M.S. Characterization and Rheology of Water-in-Oil Emulsion from Deep Water Fields. Master thesis.// Houston TX: Rice University, 2009, 121 p. 
  11. Lee H.M., Lee J.W. and Park O.O. Rheology and dynamics of water-in-oil emulsions under steady and dynamic shear flow // Journal Colloid Iinterface Science,No.185, 1997 , p. 297-305. 
  12. Babak V.Q. Emulsions - gels, or two-fluid foams. Receiving, you state, application // Moscow seminar «Latest achievements in the field of polymer science». INEOS RAS, Moscow, 2002, 37 p. 
  13. Ismayilov F.S., Ismayilov Q.Q., Safarov N.М. et al. Transportatoin method of high-viscosity oils flowing through the pipeline // Patent of the Azerbaijan Republic I 2004 0032 (registered on 06/09/2014). 
  14. Abdul Manan M., Mat H.B., Ling L.J. Rheological Properties of Crude Oil Emulsion // Proceedings of Regional Symposium on Chemical Engineering, Hyatt Regency, Johor Bahru, Johor, Malaysia, October 13-15, 1997, рр.43-54.
  15. Аkhmetov А., Тelin А., Коrnilov А. Dispersive and rheological characteristics characteristics of reverse oil-water emulsions based on oils Priobye and Mamontovskoe deposits // Scientific and technical bulletin of YUKOS, 2004, No. 9, pp. 43-50. 
  16. Binks B.P. (Ed.) Modern aspects of emulsion science. – Cambridge: Royal Society of Chemistry, 1998, 430 p. 
  17. Evdokimov I. N., Losev A.P.Thixotropy in Native Petroleum Emulsions// Journal of Dispersion Science and Technology, 2011, vol.3, 20 p. 
  18. Ismayilov G.G., Safarov N.M., Nurmamedova R.G., Aliev S.T. About the possibility of using fractal analysis for the study of structural changes and properties of water-oil emulsions // Bulletin of ANAS (Series of Earth Sciences), 2013, No. 1, pp. 76-83. 
  19. Ismayilov G.G., Safarov N.M. On the prospects for the use of rheotechnologies in oil and gas production processes based on «Mirzadzjanzade emulsions». // Materials of the international scientific conference dedicated to the 85th anniversary of Academician A.Kh. Mirzadzhanzade, Baku, November 21-22, 2013, pp. 131-132.
Read more Read less

DOI: 10.5510/OGP20210400618

E-mail: natik_safarov@mail.ru


K.A. Mamedov, N.S. Gamidova

«OilGasScientificResearchProject» Institute, SOCAR, Baku, Azerbaijan

Prevention of corrosion destruction of oilfield equipment by composition based on technical phosphatides


A multifunctional reagent based on technical phosphatide and monoethanolamine has been developed to inhibit corrosion and erosion in the system of field pipelines, as well as to reduce the viscosity of oil. The optimal consumption of an inhibitor is recommended to take 500 mg/l. In this case, the corrosion protection effect is 94%, and the destruction efficiency of sulfate-reducing bacteria is 98%. Studies have shown that the same amount of reagent prevents the process of paraffin deposition and reduces the viscosity of the oil. The results of field tests showed that when using the reagent, the corrosion rate decreased on average from 0.6726 g/m2 · hour to 0.0631 g/m2· hour, while the protective effect was 91%. In addition, this reagent, by reducing the viscosity of oil and reducing hydraulic losses, lowers the flow pressure from 0.14 to 0.1 MPa, which contributes to an increase in the efficiency and integrity of the transport system.

Keywords: environment; reagent; aggressive environment; corrosion; viscosity; paraffin deposition.

A multifunctional reagent based on technical phosphatide and monoethanolamine has been developed to inhibit corrosion and erosion in the system of field pipelines, as well as to reduce the viscosity of oil. The optimal consumption of an inhibitor is recommended to take 500 mg/l. In this case, the corrosion protection effect is 94%, and the destruction efficiency of sulfate-reducing bacteria is 98%. Studies have shown that the same amount of reagent prevents the process of paraffin deposition and reduces the viscosity of the oil. The results of field tests showed that when using the reagent, the corrosion rate decreased on average from 0.6726 g/m2 · hour to 0.0631 g/m2· hour, while the protective effect was 91%. In addition, this reagent, by reducing the viscosity of oil and reducing hydraulic losses, lowers the flow pressure from 0.14 to 0.1 MPa, which contributes to an increase in the efficiency and integrity of the transport system.

Keywords: environment; reagent; aggressive environment; corrosion; viscosity; paraffin deposition.

References

  1. Mammadov, K. A., Aliyev, S. T., Aliyev, Sh. Í. (2011). Control measures against corrosion and mechanical jamming of subsurface equipment in deep pumping wells. Azerbaijan Oil Industry, 10, 41-44. 
  2. Suleimanov, B. A., Kerimov, M. Z., Salmanly, V. A., et al. (2005). Bituminous-polymeric composition. Patent RU 2307139. 
  3. Bodude, M. A., Obidiegwu, E. O., Onovo, H. O., et al. (2012). Experimental studies on the use of sacrificial anode in oil and gas pipeline corrosion protection. International Journal of Mechanical Computational and Manufacturing Research, 1(3), 87-96. 
  4. Suleimanov, B. A., Ismailov, F. S., Iskenderov, D. A., et al. (2012). Composition for protective coating. Patent of the Azerbaijan Republic İ 20120169. 
  5. Suleimanov, B. A., Kerimov, M. Z., Salmanov, V. A., et al. (2006). Process for casting aluminum protectors. Patent RU 2275983 
  6. Abbasov, V. M., Mursalov, N. İ., Guliyev, A. A.(2015) Synthesis of imidazoline derivatives on the basis of triethylenetetramine and naphthenic acids and research of imidazoline derivatives as corrosion inhibitor. International Journal of Engineering and Innovative Technology, 5, 21-23. 
  7. Hamidova, N. S., Azimov, N. A., Ahmedova, A. V. (2013). Corrosion protection of oil field system by "Oilgas" series’ reagents of complex action under conditions of watering and contamination by microorganisms. SOCAR Proceedings, 2, 71-75. 
  8. Mammedov, K. A., Hamidova, N. S., Aliyev, T. S. (2019). Development of a new multifunctional inhibitor for the protection of oilfield equipment. Chemical and Petroleum Engineering, 55(3), 340-346. 
  9. Mammedov, K. A., Hamidova, N. S., Aliyev, T. S. (2020). Development of a multifunctional corrosion inhibitor, possessing the properties of a microemulsion. News of the NAS of the Republic of Kazakhstan. Series of Geology and Technical Sciences, 1(439), 64-72. 
  10. Askari, M., Aliofkhazraei, M., Ghaffari, S., et al. (2018). Film former corrosion inhibitors for oil and gas pipelines – a technical review. Journal of Natural Gas Science and Engineering, 58(10), 92-114. 
  11. Enning, D., Garrelfs, J. (2014). Corrosion of Iron by sulfate-reducing bacteria: new views of an old problem. Applied and Environmental Microbiology, 80(4), 1226–1236. 
  12. Ismayılov, O. D., Shabanova, Z. A., Sultanov, E. F., Veliyev, F. Q. (2019). Development and protective properties of bactericide inhibitor hydrogen and microbiological corrosion of steel based on nitrogen-containing compounds. SOCAR Proceedings, 3, 29-33.
Read more Read less

DOI: 10.5510/OGP20210400619

E-mail: k.a.mammedov@gmail.com


Z. F. Mamedov1, S. H. Qurbanov1, E. D. Streltsova2, А.I. Borodin*1,3, I. Yakovenko2, А.А. Аliev3 

1Azerbaijan State University of Economics, Baku, Azerbaijan; 2Platov South Russian State Polytechnic University (NPI), Novocherkassk, Russia; 3Plekhanov Russian University of Economics, Moscow, Russia

Mathematical models for assessing the investment attractiveness of oil companies


The article is devoted to the development of economic and mathematical tools for assessing the level of investment attractiveness of oil companies. It is noted that the oil industry is the driver of economic development of any country. The spread of the COVID-19 pandemic has caused a significant problem of instability in the Russian oil sector. This problem is of a strategic nature and its solution requires the activation of investment in the oil complex enterprises and, as a result, the development and use of model tools to assess the level of investment attractiveness of investment objects. The economic and mathematical model proposed in this article is based on the application of the mathematical apparatus of fuzzy logic and allows us to give a quantitative assessment of the investment climate of oil companies when operating with qualitatively defined characteristics (multipliers). 

Keywords: Oil companies; Investment attractiveness; Mathematical model; Soft computing; Fuzzy logic.

The article is devoted to the development of economic and mathematical tools for assessing the level of investment attractiveness of oil companies. It is noted that the oil industry is the driver of economic development of any country. The spread of the COVID-19 pandemic has caused a significant problem of instability in the Russian oil sector. This problem is of a strategic nature and its solution requires the activation of investment in the oil complex enterprises and, as a result, the development and use of model tools to assess the level of investment attractiveness of investment objects. The economic and mathematical model proposed in this article is based on the application of the mathematical apparatus of fuzzy logic and allows us to give a quantitative assessment of the investment climate of oil companies when operating with qualitatively defined characteristics (multipliers). 

Keywords: Oil companies; Investment attractiveness; Mathematical model; Soft computing; Fuzzy logic.

References

  1. Gorodnova N.V., Skipin D.L., Peshkova A.A. (2019). Research of the digital potential of innovative projects of Russian companies. Economic Relations, 9(3), 2229-2248. 
  2. Yakovleva E.A., Platonov V.V., Karlik E.M., Sharich E.E., Yakovleva D.D. (2019). An empirical model for the systematization of financial indicators by management functions as the basis for establishing the innovative potential of an organization. Leadership and Management, 6(2), 73-90. 
  3. Mokina L.S., Sumkina O.V., Shadurskaya M.M. (2018). Analysis of the Application of Investment Tax Credit as a Tool for Financing the Innovative Economy in Russian Practice. Creative Economy. 12(1), 59-72. 
  4. Shomakhova M.A. (2016). Improving the efficiency of strategic factors in the development of investment activities of the agro-industrial complex of the region. Economics, entrepreneurship and law. 6(4), 397-408. 
  5. Karpova V.B., Zaitsev A.V. (2016). The influence of globalization on the formation of factors for the development of the competitive environment of enterprises in high-tech industries. Russian Journal of Entrepreneurship. 17(18), 2257-2270. 
  6. Karpova V.B. (2015). Features of financing investment projects in the field of innovation. Issues of innovative economics. 3(2), 33-40. 
  7. Lukyanchik A.A. (2015). Mechanisms used by host states for legal failure to fulfill obligations under international investment treaties. Economics, Entrepreneurship and Law. 5(4), 181-190. 
  8. Sansyzbayev, A. (2019). Influence of social partnership to the development of enterprise (on the example of oil industry), Entrepreneurship and Sustainability Issues, 7(2), 1613-1627. http://doi. org/10.9770/jesi.2019.7.2(57). 
  9. Shitao Gong, С Xin Gao, Zhou Li, Linyan Chen. (2021). Developing a Dynamic Supervision Mechanism to Improve Construction Safety Investment Supervision Efficiency in China: Theoretical Simulation of Evolutionary Game Process. International Journal of Environmental Research and Public Health, 18(7), 3594. 
  10. Cong Wang, Zongbao Zou, Shidao Geng. (2021). Green Technology Investment in a Decentralized Supply Chain under Demand Uncertainty. Sustainability, 13(7), 3752. 
  11. Rachel Shields, Samer Ajour El Zein, Neus Vila Brunet. (2021). An Analysis on the NASDAQ’s Potential for Sustainable Investment Practices during the Financial Shock from COVID-19. Sustainability, 13(7), 3748. 
  12. Henrieta Pavolová, Tomáš Bakalár, Alexander Tokarčík, Ľubica Kozáková, Tomáš Pastyrčák. (2021). An Economic Analysis of Brownfield and Greenfield Industrial Parks Investment Projects: A Case Study of Eastern Slovakia. International Journal of Environmental Research and Public Health, 18(7), 3472. 
  13. Dimitris Damigos, Christina Kaliampakou, Anastasios Balaskas, Lefkothea Papada. (2021). Does Energy Poverty Affect Energy Efficiency Investment Decisions? Energies, 14(6), 1698. 
  14. Vasconcelos, V.V. (2021). Social justice and sustainable regional development: reflections on discourse and practice in public policies and public budget. Insights into Regional Development, 3(1), 10-28. https://doi.org/10.9770/IRD.2021.3.1(1)
  15. Masood, O., Tvaronavičienė, M., Javaria, K. (2019). Impact of oil prices on stock return: evidence
    from G7 countries, Insights into Regional Development, 1(2), 129-137. https://doi.org/10.9770/ird.2019.1.2(4)
  16. Fumin Deng, Yanan Jin, Meng Ye, Shuangyi Zheng. (2019). New Fixed Assets Investment Project Environmental Performance and Influencing Factors—An Empirical Analysis in China’s Optics Valley. International Journal of Environmental Research and Public Health, 16(24), 4891. 
  17. Giamporcaro S., Leslie D. (2018). Responsible investment at Old Mutual: a case of institutional entrepreneurship. Emerald Emerging Markets Case Studies, https://www.emerald.com/insight/content/doi/10.1108/EEMCS-02-2018-0025/full/html 
  18. Harry Hummels, Marieke de Led. (2014). The emergence of impact investments: The case of microfinance. Emerald Group Holdings Limited (EmeraldGroup). Vol. 7, 91-115. 
  19. Mc Donald, M. B., DeGennaro, R.P. (2016). A review of angel investing research: analysis of data and returns in the US and abroad. Studies in Economics and Finance. 33(4), 716-734. 
  20. Pogodina, T.V., Aleksakhina, V.G., Burenin, V.A, Polianova, T.N., Yunusov, L.A. 2019. Towards the innovation-focused industry development in a climate of digitalization: the case of Russia, Entrepreneurship and Sustainability Issues, 6(4): 1897-1906. http://doi.org/10.9770/jesi.2019.6.4(25)
  21. Roundy, P. T. (2019). Regional differences in impact investment: a theory of impact investing ecosystems. Social Responsibility Journal. 16(4), 467-485. 
  22. Najafabadi Z. M., Bijari M., Khashei M. (2019). Making investment decisions in stock markets using a forecasting-Markowitz based decision-making approaches. Journal of Modelling in Management. 15(2), 647-659. 
  23. Li W. C., Wu Y., Ojiako U. (2014). Using portfolio optimisation models to enhance decision making and prediction. Journal of Modelling in Management. 9(1), 36-57. 
  24. Cardin M., Eisenberg B., Tibiletti L. (2013). Mean‐extended Gini portfolios personalized to the investor's profile. Journal of Modelling in Management. 8(1), 54-64. 
  25. Clara Calvo, Carlos Ivorra , Vicente Liern and Blanca Pérez-Gladish. (2021). Grading Investment Diversification Options in Presence of Non-Historical Financial Information. Mathematics. 9(6), 692. 
  26. Oesterreich T. D., Teuteberg F. (2019). Integrating system dynamics and VoFI for the dynamic visualization of financial implications arising from IT and IS investments. Journal of Modelling in Management. 15(1), 232-256. 
  27. Qureshi M. A.(2007). System dynamics modelling of firm value. Journal of Modelling in
    Management. 2(1), 2-39. 
  28. Basilio M. P., Freitas J.G, Milton G. F., Ricardo B. R. (2018). Investment portfolio formation via multicriteria decision aid: a Brazilian stock market study. Journal of Modelling in Management. 13(2), 394-417. 
  29. Hilmola O. P., Henttu V. (2016). Transportation costs do matter: Simulation study from hospital investment decision. Journal of Modelling in Management. 11(2), 560-584. 
  30. Jothimani D., Shankar R., Yadav S. S. (2017). A PCA-DEA framework for stock selection in Indian stock market. Journal of Modelling in Management. 12(3), 386-403. 
  31. Tavakoli M. M., Shirouyehzad H., Dabestani R. (2016). Proposing a hybrid method based on DEA and ANP for ranking organizational units and prioritizing human capital management drivers. Journal of Modelling in Management. 11(1), 213-239. 
  32. Ruth Rios‐Morales, Dragan Gamberger, Ian Jenkins, Tom Smuc. (2011). Modelling investment in the tourism industry using the World Bank's good governance indicators. Journal of Modelling in Management. 6(3), 279-296. 
  33. Kaur J. (2018). Investors’ probable solutions to their problems: a study of Punjab. International Journal of Law and Management. 60(2), 355-372. 
  34. Kuo-Chih Cheng, Mu-Jung Huang, Cheng-Kai Fu , Kuo-Hua Wang , Huo-Ming Wang and Lan-Hui Lin. (2011). Establishing a Multiple-Criteria Decision-Making Model for Stock Investment Decisions Using Data Mining Techniques. Sustainability, 13(6), 3100. 
  35. Shihong Zeng, and Ya Zhou. (2021). Foreign Direct Investment’s Impact on China’s Economic Growth, Technological Innovation and Pollution. International Journal of Environmental Research and Public Health, 18(6), 2839. 
  36. Tomiwa Sunday Adebayo, Sema Yılmaz Genç, Rui Alexandre Castanho, and Dervis Kirikkaleli. (2021). Do Public–Private Partnership Investment in Energy and Technological Innovation Matter for Environmental Sustainability in the East Asia and Pacific Region? An Application of a Frequency Domain Causality Test. Sustainability, 13(6), 3039. 
  37. Wu C. R., Chang H. Y., Wu L. S. (2008). A framework of assessable mutual fund Performance. Journal of Modeling in Management. 3(2), 125-139. 
  38. Bhadani A. K., Shankar R., Rao D. V. (2016). Modeling the factors and their inter-dependencies for investment decision in Indian mobile service sector. Journal of Modelling in Management. 11(1), 189-212. 
  39. Schniederjans M. J., Hamaker J. L. (2003). A new strategic information technology investment model. Management Decision. 41(1), pp. 8-17. 
  40. Pramanik D., Mondal S. C., Haldar A. (2020). Resilient supplier selection to mitigate uncertainty: Soft-computing approach. Journal of Modelling in Management. 15(4), 1339-1361. 
  41. Agrawal S., Singh R. K., Murtaza Q. (2016). Disposition decisions in reverse logistics by using AHP-fuzzy TOPSIS approach. Journal of Modelling in Management. 11(4), 932-948. 
  42. Tanaka H., Okuda T., Asai K. (1976). A formulation of fuzzy decision problems and its application to an investment problem. Kybernetes. 1976, 5(1), 25-30. 
  43. Ziyadin, S., Streltsova, E., Borodin, A., Yakovenko, I., Baimukhanbetova, E. (2019). Assessment of investment attractiveness of projects on the basis of environmental factors. Sustainability, 11(9), 2544. 
  44. Ziyadin, S., Borodin, A., Streltsova, E., Suieubayeva, S., Pshembayeva, D. (2019). Fuzzy logic approach in the modeling of sustainable tourism development management. Polish Journal of Management Studies, 19(1), 492–504. 
  45. Zadeh L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning. Information Science. 8(1), 199-249.
Read more Read less

DOI: 10.5510/OGP20210400620

E-mail: aib-2004@yandex.ru


F. A. Aliev1,2, N.A. Aliev1, N.S. Hajiyeva1, N.A. Ismailov1,2, I.A. Magarramov1, A.B. Ramazanov1, V.C. Abdullayev3 

1Institute of Applied Mathematics, BSU, Baku, Azerbaijan; 2Institute of Information Technologies, ANAS, Baku, Azerbaijan; 3«OilGasScientificResearchProject» Institute, SOCAR, Baku, Azerbaijan

Solution of an oscillatory system with fractional derivative including to equations of motion and to nonlocal boundary conditions


In the paper an oscillatory system with liquid dampers is considered, where the fractional derivative (p/q) including both equation of motion and the corresponding nonlocal boundary condition with a regular fraction step (1/q). Based on Mittag-Leffler function, an independent solution of the homogeneous equation is constructed, and on the basis of this, the formula for the solution of the corresponding boundary value problem is given. The results are illustrated by the example of periodic boundary value problems. 

Keywords: oscillatory systems; liquid damper; nonlocal boundary conditions; fractional derivative; fundamental matrices.

In the paper an oscillatory system with liquid dampers is considered, where the fractional derivative (p/q) including both equation of motion and the corresponding nonlocal boundary condition with a regular fraction step (1/q). Based on Mittag-Leffler function, an independent solution of the homogeneous equation is constructed, and on the basis of this, the formula for the solution of the corresponding boundary value problem is given. The results are illustrated by the example of periodic boundary value problems. 

Keywords: oscillatory systems; liquid damper; nonlocal boundary conditions; fractional derivative; fundamental matrices.

References

  1. Bonilla, B., Rivero, M., Trujillo, J. J. (2007). On systems of linear fractional differential equations with constant coefficients. Applied and Computational Mathematics, 187, 68-78. 
  2. Harikrishnan, S., Kanagarajan, K., Elsayed, E. M. (2019). Existence and stability results for differentialequations with complex order involving Hilfer fractional derivative. TWMS Journal of Pure and Applied Mathematics, 10(1), 94-101. 
  3. Miller, K. S., Ross, B. (1993). An introduction to the fractional calculus and fractional differential equations. New York: John Wiley & Sons, Inc. 
  4. Monje, C. A., Chen, Y. Q., Vinagre, B. M, et al. (2010). Fractional–order systems and controls fundamentals and applications. London: Springer. 
  5. Abbas, S., Benchohra, M., Hamidi, N., Nieto, J. J. (2019). Hilfer and Hadamard fractional differential equations in Frechet spaces. TWMS Journal of Pure and Applied Mathematics, 10(1), 102-116. 
  6. Odibat, Z. (2020). Fractional power series solutions of fractional differential equations by using generalized Taylor series. Applied and Computational Mathematics, 19(1), 47-58. 
  7. Aliev, F. A., Aliev, N. A., Safarova, N. A. (2019). Transformation of the Mittag-Leffler function to an exponential function and some of its applications to problems with a fractional derivative. Applied and Computational Mathematics, 18(3), 316-325. 
  8. Aliev, F. A., Aliev, N. A., Mutallimov, M. M., Namazov, A. A. (2008). Identification method for determining the order of the fractional derivative of an oscillatory system. Proceedings of IAM, 8(1), 3-13. 
  9. Aliev, F. A., Aliev, N. A., Safarova, N. A., et al. (2020). Parameterization to solve the problem of analytical construction of the optimal regulator of oscillatory systems with liquid dampers. Journal of Applied and Computational Mechanics, 6(SI), 1426-1430. 
  10. Aliev, F. A., Aliev, N. A., Safarova, N. A., et al. (2017). Analytical construction of regulators for systems with fractional derivatives. Proceedings of the Institute of Applied Mathematics, 6(2), 252-265. 
  11. Aliev, F. A., Aliev, N. A., Safarova, N. A., Velieva, N. I. (2020). Algorithm for solving the Cauchy problem for stationary systems of fractional order linear ordinary differential equations. Computational Methods for Differential Equations, 8(1), 212-221. 
  12. Aliev, F. A., Aliev, N. A., Velieva, N. I., Gasimova, K. G. (2020). The method of discretization of fractional order linear systems of ordinary differential equations with constant coefficients. Nonlinear Oscillations, 23(1), 3-10. 
  13. Petrovsky, I. G. (1952). Lectures on the theory of ordinary equations. Moscow: Gostekhizdat. 
  14. Zabreiko, P. P., Kiselev, A. N., Krasnoselsky, M. A., et al. (1968). Integral equations. Moscow: Nauka. 
  15. Aliev, F. A., Aliev, N. A., Mutallimov, M. M., Namazov, A. A. (2020). Algorithm for solving the identification problem for determining the fractional-order derivative of an oscillatory system. Applied and Computational Mathematics, 19(3), 415-422. 
  16. Samko, S., Marichev, O., Kilbas, A. (1987). Fractional integrals and derivatives and some of their applications. Minsk: Science and Technica.
Read more Read less

DOI: 10.5510/OGP20210400621

E-mail: f_aliev@yahoo.com


S.S. Babayev, S.S. Qocayeva, N.M. Nazarov 

Academician A.M.Guliyev Institute of Chemistry of Additives, Azerbaijan National Academy of Sciences, Baku, Azerbaijan

Some transformations of tetrahydropyrimidines


An efficient synthesis method based on three-component condensation of various aldehydes, methylene active compounds and phenylthiourea (urea) in the presence of hydrofluoric acid has been developed and some of their transformations have been carried out. An efficient method has been developed for the synthesis of some derivatives of tetrahydropyrimidine-5-carboxylates based on the three-component condensation of various aldehydes and β-diketones with thiocarbamide. The antioxidant properties of the synthesized compounds were studied in model reactions by the kinetic method. 

Keywords: methylene active compounds; urea; hydrofluoric acid; thiourea; antioxidant; acetic acid.

An efficient synthesis method based on three-component condensation of various aldehydes, methylene active compounds and phenylthiourea (urea) in the presence of hydrofluoric acid has been developed and some of their transformations have been carried out. An efficient method has been developed for the synthesis of some derivatives of tetrahydropyrimidine-5-carboxylates based on the three-component condensation of various aldehydes and β-diketones with thiocarbamide. The antioxidant properties of the synthesized compounds were studied in model reactions by the kinetic method. 

Keywords: methylene active compounds; urea; hydrofluoric acid; thiourea; antioxidant; acetic acid.

References

  1. Magerramov, A. M., Kurbanov, A. V., Khrustalev, V. N., et al. (2010). Crystal structure of ethyl 9-methyl-10-phenyl-11-thioxo-8-oxa-10,12-diazatricyclo [7.3.1.02.7] trideca-2(7), 3,5-trien-13-carboxylate. Journal of Structural Chemistry, 51(5), 968-971. 
  2. Brginelli, P. G. (1893). Syntheis of some thiocarbamides. Gazzetta Chimica Italiana, 23, 360-416. 
  3. Farzaliev, V. M., Allakhverdiev, M. A., Shamkhalova, S. A., Rzaeva, I. A. (2004). Synthesis and antioxidative activity of s-substituted 2-mercapto-1,4-dihydroxybenzenes. Russian Journal of Applied Chemistry, 77(5), 783-786. 
  4. Meherremov, A. M., Gocayeva, S. S., Zamanova, A. V., ve b. (2006). 3,4-dihidropirimidin-2(1H)-on(tion)larin sintezi və onlarin bezi chevril¬meleri. Kimya Problemleri Jurnali, 2, 306-309. 
  5. Cappe, C. O. (2000). Pyrimidme and its derivatives in heteroclic compounds. Accounts of Chemical Research, 33, 879.
Read more Read less

DOI: 10.5510/OGP20210400622

E-mail: Sabir.babayev.56@gmail.com