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ABSTRACT

An important task at the stage of designing any activity related to oil recovery enhancement (in the present case repair and isolation

works), is process modeling, in particular, hydrodynamic modeling. Modeling is used to forecast the parameters of oil recovery as s

function of the implemented technology at the design stage. As a result, the cost of works performed can be reduced and the profitabil-

ity and success rate of the planned activities can be assessed. The paper considers the assessment of technological and economic effects

using the developed two-phase hydrodynamic model simulating oil-saturated and water-bearing layers. Discussed are the calculated

values and relationship between skin factor and various isolation factors. The graphs of oil flow rate and water cut as functions of the

material isolation factor are given.
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Introduction

To assess the effectiveness of measures aimed at isolat-
ing water inflow, a hydrodynamic model was created to
calculate the required amount of water-isolation composi-
tion. The developed two-phase hydrodynamic model makes
it possible to initiate overflow into water-bearing bed by
perforation. This model already at the initial stage shows
how currents change during the operation of the target
layer and behind-the-casing overflow. Also, this hydrody-
namic model shows a pronounced tendency of skin factor
variation with an increase of isolation factor. This makes it
possible to predict the increase of oil flow rate and decrease
of water inflow at the design stage. The applied model
makes it possible to determine the direct economic efficien-
cy of measures in the process of designing works, without
applying complex calculations and formulas, which will
also greatly facilitate and simplify the work of engineering
staff at the design stage [1-8].

Materials and methods

A two-phase hydrodynamic model is a simulation of a
two-layer object, divided by a jumper, where the upper layer
is completely oil-saturated, and the lower layer is water-bear-
ing (fig. 1). According to the calculation conditions, the layers
are operated by one well, with constant boundary conditions
(pressure, saturation). The permeabilities and thicknesses of
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layers are given in table 1.

The well was launched for the designed operation period
of 20 years. For the eighth year, the behind-the-casing circu-
lation was modeled by creating a connection (perforation) to
the upper cell of the aquifer (fig. 2).

The flow rate of the liquid in the calculation was set con-
stant. Water isolation was modeled by adding calculated skin
factors for a specific injection volume of 15 m*/m for isolation
factors of 85, 90, 95, 99 (table 2) according to the formula

k—k- [;(OOJ Vrezu‘
iso 1! 1n 7-h-m

k T

well

S(Kisarvrmc): (1)

The results of the performed calculations are shown in
figures 5 and 6.

The ratio of the oil flow rates after treatment and before
the occurrence of behind-the-casing circulation is shown in
table 3.

Figure 5 and table 3 show that for none of the calculated
options, the oil flow rate after treatment is greater than that
before the occurrence of behind-the-casing circulation.

Table 1
Filtration characteristics of layers in the model
Interlayer Thickness Permeability
1 layer 3.5 305.7
2 layer 4 1061
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So it can be concluded that the technological effect of
water isolation of the inflow from the aquifer is aimed at
restoring the basic oil recovery, and for a given range of
isolation factor, the recovery of the basic oil recovery is from

33 t0 90 %.

This technique allows conducting an economic assess-
ment of activities based on two components. The performed
calculations allow us to select the minimum required vol-

on 0.2375 0.4751 07128 08501

Fig. 1. Model for calculations (saturation)

Table 2
Calculated skin factors for various isolation factors

Specific volume °\:, °\; Q\L: i f
per 1 m of layer ® ™ T ™ ™
thickness > Q ¥ v )

1 15 23 49 126 | 255

2 19 29 62 160 | 323

10 28 44 93 239 483

15 30 48 100 | 259 | 523

Table 3

The ratio of the oil flow rates after treatment and before
the occurrence of behind-the-casing circulation

Isolation factor 85 | 90 | 95 | 98 | 99

Recovery percentage of the 33 | 44 | 62 | 81 | 90

basic oil flow rate, %

Fig. 2. Location of model perforation in the upper oil-saturated layer (a),
partially in the aquifer (behind-the-casing overflow modeling) (b)

b)

Fig. 3. Current lines during target layer operation

P

Fig. 4. Current lines upon occurrence of
behind-the-casing circulation
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Fig. 5. Estimated change of oil flow rate
for various isolation factors
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Fig. 6. Estimated change of water cut
for various isolation factor
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Table 4
Characteristics of well used in the calculations
Characteristics Value Measure unit
Liquid flow rate 100 m®/day
Water flow rate 90 m®/day
Water cut 90 %
Backfill pressure 50 atm
Aquifer permeability 120 mD
Aquifer porosity 0,2 unit fraction
Aquifer thickness 7.6 m
Well radius 0.073 m
Volume factor 1.0 unit fraction
Water viscosity 1.6 cP
Table 5

The calculated pressure profiles at various
distances from the well

Radius | Pressure | Gradient Total Relative
from | atradius, | dP/dr, pressure pressure
well, m atm atm/m | change, atm | change, atm

0.076 50.0
0.50 55.46 12.88 12.88 64 %
2.0 59.48 2.68 15.56 77 %
3.0 60.66 1.18 16.74 83 %
4.0 61.49 0.83 17.57 87 %
5.0 62.14 0.65 18.22 90 %
6.0 62.67 0.53 18.75 93 %
8.0 63.50 0.83 19.58 97 %
9.0 63.85 0.34 19.93 98 %
100 | 6415 0.31 20.23 100 %
70.00
E 6500 -
S 60.00 e
§ 5500
g 5000
& 45.00
40.00
0 2 4 6 8 10 12
Length
Fig. 7. The calculated pressure profile
for various distances from the well
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Fig. 8. The calculated required volume of reagent
as a function of the treatment radius
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ume of the water-isolation composition V for a particular
well [9]. Knowing the specific cost (Si, S, Ss, etc.) of each
of the available water shut-off compositions, suitable in the
existing geological and technical conditions, it is possible
to calculate the costs Sy for each of the treatment options
using the formula

Sy=V-§, )

The technology variant with the lowest cost value Sy will
provide the highest economic efficiency of the activity. The
cost reduction will also be provided by the allowable (con-
firmed by calculations) reduction of water-isolation composi-
tion volume, not affecting the final result [10].

The developed methodology of planning water shut-off
works was tested in a well with the geological and technical
characteristics shown in table 4.

The following expressions were used in the calculations:

Gu=k-(qi-q:-(1-B)) ®)

TAe . is the water flow rate in the aquifer, m3/day; g; is the
liquid flow rate in the well, m3/day, m*/cyT; B is the volumetric
water cut of the well, unit fraction, a.ea; k — is the coefficient,
taking into account the natural water cut of the target layer
(under the condition that the target layer is oil-saturated, it is
equal to 1, i.e. all water comes from the aquifer);

m-lnL-O.BMM (4)
0.00708 -k -h T,

well

P(r)=Pyp +

TAe g, is the water flow rate in the aquifer, m*/day; k is the
aquifer permeability, mD; & is the aquifer thickness, m; . is
the well radius, m; B, is the volume factor, unit fraction; i, is
the water viscosity, cP.

The results obtained are shown in table 5 and figure 7.

The required volume of the water shut-off composition,
depending on the radius of treatment, is found by the
formula

Viw=1-72-h-m (5)

where 7 is the accepted treatment radius; & is the thickness of
the aquifer; m — is the porosity of the layer.

The calculation results are shown in figure 8.

The following formulae were used to calculate the skin

factor:
K R
= =_1]-ln—== 6
=[%-)n ©

Vigell

where 7, is the well radius; R, is the radius of treatment zone;
k is the permeability of aquifer, mD; K; is the permeability of

skin zone and
Ks—k—k-(looj (7)
Kisu
The results obtained are shown in figure 9.
The following expressions were used in the calculations

~ 0.00708 - k-Ji-(P,, — P, )

1= R 8)
/J-B-[ln”"+sj-0.13

Vell

The following expression was used to estimate the well flow
rate and the reduction in water production after treatment
(fig. 10).
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Fig. 9. The relationship between the skin factor Fig. 10. The ratio of the water flow rate to the initial one
and the isolation factor as s function of the composition isolation factor
Results

Based on theoretical calculations, it was found that the
required volume of injection of a water-isolation composition
is mainly influenced by two factors - the strength characteristic
of the composition and the required additional resistance in
the bottom-hole zone of the aquifer [11-16]. At the same time,
it is obvious that with an increase in the injection volume, the
radius of the tr eatment zone increases, and the effect of water
shut-off measures increases [17-19].

To analyze the impact of the isolation factor and the
specific volume of treatment per meter of isolated thickness,
analytical calculations were carried out using the proposed
method. For calculations, the range of isolation factor was
taken from 80 to 99%.

The calculation was carried out using the expressions
(5)-(7), where skin factor is a function of isolation factor and
reagent volume:

k—k (?0] Vieac
S (Kisul/ Vreac) = s 1|-In 7 hm
k t,

well

©)

Herewith, the volume of water coming from the non-
perforated interval is controlled by the achieved additional
filtration resistance [20-22]. The water inflow is calculated

using the expression (10)

Q,, =0.00708 - ky - hy (Psn - thp)

(10)

i, B, Inr+sj~0.130454

rwell
The calculation results are shown in figure 11. The cal-
culated skin factors for various isolation factors are shown
by dash-dotted lines, the calculated relationship between the
flow rate and the skin factor is shown by the red line.
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Fig. 11. Relationship between water flow rate and

the composition volume

Conclusion
The obtained calculation results allowed us to make the following conclusions:
*  The work results are influenced to a greater extent by the isolation factor rather than injection volume

for isolation factors exceeding 90%;

*  With injection volume higher than 12-15 m3/m, the efficiency of further increase of the injection volume
decreases, this is proved by flattening of injection volume-skin factor curves for any isolation factor;
®  The technological effect of measures for water isolation from aquifer is used to restore the basic oil

recovery.
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Metoa onpeaeaenns 9¢pPeKTMBHOCTU BOAOU30ASIIMOHHBIX pabOT
Ha IIpuMepe CO34aHNs IMApOoAVTHaMITIeCKOM MOJeAn

P. 3. Hypzaaueg’, U. I. @ammaxoe™?, P. P. Xycnymounosea’,
A. P. Bagun?, A. C. 2Kupxeee®, A. K. Caxanoea’
MuctutyT HepTM U Tasa, ¥ PUMCKIIT TOCYAapCTBEHHBIN He(PTAHOM
TeXHMIeCcKuil yHusBepcnreT, (pranaa B 1. OKTaA0phcKkoM), Poccns
TIAO «TataedpTn» Mmenu B. /. IllamuHa, AapmeTtsesck, Pocens
‘Mucturyt «TatHUTIINHepTH» ITAO «TatHedTs» nm. B. . Mlammna, byryasma, Poccnsa

Pedepar

BaskHoi1 3azaueit Ha DTaIle IPOEKTHPOBaHNS AI000TO MEPOIIPUATH:, CBA3aHHOTO C ITOBBIITIeHNeM He(Te-
OTJauM I11acTa, B HaIlleM CAydJae PeMOHTHO-M30AAIMOHHEIX paboT, ABAJETC MOAeAUpOBaHIe IIporiecca, B
9acTHOCTH, TMAPOAMHaMIYecKoe Mojeauposanne. OHO JaeT BO3MOXKHOCTH CIIPOTHO3MPOBATDL ITapaMeTph
He(pTEOTAauM OT IMPUMEHEHNs TeXHOAOTUM B IIpoliecce IPOeKTUPOBAHI, TeM CaMBIM CHM3UTh CTOMMOCTD
BBIITOAHEHHBIX paboOT, M OmpejeANnTh peHTabeAbHOCTh M IMPOIIeHT YCHeITHOCTM IIAaHMPYEeMBIX MepOIIpu-
ATuit. B craTee paccMaTpuBaeTcsl OIleHKa TeXHOJAOTUMYECKOTO U DKOHOMMIYECKOTo d¢ekTa ¢ MOMOIIBIO,
CO34aHHOI AByX(a3HOI IMAPOANHAMIIECKOI MOAeAN, MMUTUPYIOITell HepTeHaChIIIIeHHBI 1 BOJOHOCHBIN
ca0u, IpMBeAEHBl pacyéTHEIe 3HaYeHUs U IpaUKM 3aBUCUMOCTH CKMH-(PaKTOpa A4s pa3ANdHBIX KODPPi-
IIMIEHTOB U30AAIINY, a TaKXXe rpadukK u3MeHeHn: 4ebnta HeQpTy 1 OOBOAHEHHOCTH B 3aBUCMOCTH OT KOD(-
JunmenTa n30AAIMN COCTaBa.

Katouesvie caoea: Bogonsoaanus; TMagpoAMHaMMIecKas MOAeAb; CKUH-(PaKTOp; KOD(PPUIINEHT U3015-
LIY; BOAOTIPUTOK.

Hidrodinamik modelin yaradilmasi niimunasinda
suyun izolyasiya islarinin effektivliyinin miiayyanlasdirilmasi iisulu

R. Z. Nurqaliyev’, I Q. Fattaxov?, R.R. Xusnutdinova’,
A. R. Vafin’, A. S. Jirkeyev’, A. K. Saxapova®
Ufa D6vlat Neft Texniki Universitetinin Neft vo Qaz Institutu (Oktyabrskiy s. filial1), Rusiya
2V.D. Sanin adina ISC «Tatneft», Almetyevsk, Rusiya
V. D. Sanin adina «Tatneft» ASC, «TatNIiPineft» Institutu, Buqulma, Rusiya

Xiilasoa

Layin neft hasilatinin artmas1 ile elageqar har hansi bir tadbirin layihelendirilmasi marhalasinds,
baxilan moeselada temir ve izolyasiya islerinin vacib vezifesi prosesin modellagdirilmaesi, xiisusen do
hidrodinamiki modellagdirmadir. Layiha prosesinde texnologiyanin istifadesinden neftverma parametrlarini
prognozlasdirmaga ve bununla da goriilan islarin dayerini azaltmaga ve planlagdirilan tedbirlerin rentabelliyini
vo miiveffaqiyyet faizini toyin etmaye imkan verir. Maqalads, neftlo doymus ve sulu tebaqgeni taqlid edan
yaradilmis iki fazali hidrodinamik modelin kémayi ilo texnoloji ve iqtisadi effektin qiymatlondirilmasi
miizakirs olunur, miixtslif izolyasiya emsallar1 {iciin hesablanmis dayerlor ve skin-faktorunun asililiq
grafiklari, hamcinin terkibin izolyasiya emsalindan asili olaraq neft debitinds ve sulasmada dayisiklik qrafiki
verilmisdir.

Agar sozlar: suyun izolyasiyasi; hidrodinamik model; skin-faktor; izolyasiya amsali; su axin.

99



